70 lines
2.0 KiB
Python
70 lines
2.0 KiB
Python
|
|
import numpy as np
|
||
|
|
import cv2
|
||
|
|
|
||
|
|
from starlette.requests import Request
|
||
|
|
from ray import serve
|
||
|
|
from ray.serve.handle import DeploymentHandle
|
||
|
|
|
||
|
|
from texteller.api import load_model, load_tokenizer, img2latex
|
||
|
|
from texteller.utils import get_device
|
||
|
|
from texteller.globals import Globals
|
||
|
|
from typing import Literal
|
||
|
|
|
||
|
|
|
||
|
|
@serve.deployment(
|
||
|
|
num_replicas=Globals().num_replicas,
|
||
|
|
ray_actor_options={
|
||
|
|
"num_cpus": Globals().ncpu_per_replica,
|
||
|
|
"num_gpus": Globals().ngpu_per_replica * 1.0 / 2,
|
||
|
|
},
|
||
|
|
)
|
||
|
|
class TexTellerServer:
|
||
|
|
def __init__(
|
||
|
|
self,
|
||
|
|
checkpoint_dir: str,
|
||
|
|
tokenizer_dir: str,
|
||
|
|
use_onnx: bool = False,
|
||
|
|
out_format: Literal["latex", "katex"] = "katex",
|
||
|
|
keep_style: bool = False,
|
||
|
|
num_beams: int = 1,
|
||
|
|
) -> None:
|
||
|
|
self.model = load_model(
|
||
|
|
model_dir=checkpoint_dir,
|
||
|
|
use_onnx=use_onnx,
|
||
|
|
)
|
||
|
|
self.tokenizer = load_tokenizer(tokenizer_dir=tokenizer_dir)
|
||
|
|
self.num_beams = num_beams
|
||
|
|
self.out_format = out_format
|
||
|
|
self.keep_style = keep_style
|
||
|
|
|
||
|
|
if not use_onnx:
|
||
|
|
self.model = self.model.to(get_device())
|
||
|
|
|
||
|
|
def predict(self, image_nparray: np.ndarray) -> str:
|
||
|
|
return img2latex(
|
||
|
|
model=self.model,
|
||
|
|
tokenizer=self.tokenizer,
|
||
|
|
images=[image_nparray],
|
||
|
|
device=get_device(),
|
||
|
|
out_format=self.out_format,
|
||
|
|
keep_style=self.keep_style,
|
||
|
|
num_beams=self.num_beams,
|
||
|
|
)[0]
|
||
|
|
|
||
|
|
|
||
|
|
@serve.deployment()
|
||
|
|
class Ingress:
|
||
|
|
def __init__(self, rec_server: DeploymentHandle) -> None:
|
||
|
|
self.texteller_server = rec_server
|
||
|
|
|
||
|
|
async def __call__(self, request: Request) -> str:
|
||
|
|
form = await request.form()
|
||
|
|
img_rb = await form["img"].read()
|
||
|
|
|
||
|
|
img_nparray = np.frombuffer(img_rb, np.uint8)
|
||
|
|
img_nparray = cv2.imdecode(img_nparray, cv2.IMREAD_COLOR)
|
||
|
|
img_nparray = cv2.cvtColor(img_nparray, cv2.COLOR_BGR2RGB)
|
||
|
|
|
||
|
|
pred = await self.texteller_server.predict.remote(img_nparray)
|
||
|
|
return pred
|