47 lines
1.7 KiB
Python
47 lines
1.7 KiB
Python
|
|
import torch
|
||
|
|
import numpy as np
|
||
|
|
|
||
|
|
from transformers import DataCollatorForLanguageModeling
|
||
|
|
from typing import List, Dict, Any
|
||
|
|
from .transforms import train_transform
|
||
|
|
|
||
|
|
|
||
|
|
def left_move(x: torch.Tensor, pad_val):
|
||
|
|
assert len(x.shape) == 2, 'x should be 2-dimensional'
|
||
|
|
lefted_x = torch.ones_like(x)
|
||
|
|
lefted_x[:, :-1] = x[:, 1:]
|
||
|
|
lefted_x[:, -1] = pad_val
|
||
|
|
return lefted_x
|
||
|
|
|
||
|
|
|
||
|
|
def tokenize_fn(samples: Dict[str, List[Any]], tokenizer=None) -> Dict[str, List[Any]]:
|
||
|
|
assert tokenizer is not None, 'tokenizer should not be None'
|
||
|
|
tokenized_formula = tokenizer(samples['latex_formula'], return_special_tokens_mask=True)
|
||
|
|
tokenized_formula['pixel_values'] = samples['image']
|
||
|
|
return tokenized_formula
|
||
|
|
|
||
|
|
|
||
|
|
def collate_fn(samples: List[Dict[str, Any]], tokenizer=None) -> Dict[str, List[Any]]:
|
||
|
|
assert tokenizer is not None, 'tokenizer should not be None'
|
||
|
|
pixel_values = [dic.pop('pixel_values') for dic in samples]
|
||
|
|
|
||
|
|
clm_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||
|
|
|
||
|
|
batch = clm_collator(samples)
|
||
|
|
batch['pixel_values'] = pixel_values
|
||
|
|
batch['decoder_input_ids'] = batch.pop('input_ids')
|
||
|
|
batch['decoder_attention_mask'] = batch.pop('attention_mask')
|
||
|
|
|
||
|
|
# left shift labels and decoder_attention_mask, padding with -100
|
||
|
|
batch['labels'] = left_move(batch['labels'], -100)
|
||
|
|
|
||
|
|
# convert list of Image to tensor with (B, C, H, W)
|
||
|
|
batch['pixel_values'] = torch.stack(batch['pixel_values'], dim=0)
|
||
|
|
return batch
|
||
|
|
|
||
|
|
|
||
|
|
def img_transform_fn(samples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
|
||
|
|
processed_img = train_transform(samples['pixel_values'])
|
||
|
|
samples['pixel_values'] = processed_img
|
||
|
|
return samples
|