2024-04-21 00:05:14 +08:00
|
|
|
import os
|
2024-05-09 00:20:32 +08:00
|
|
|
import time
|
2024-04-21 00:05:14 +08:00
|
|
|
import yaml
|
|
|
|
|
import numpy as np
|
|
|
|
|
import cv2
|
|
|
|
|
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
from typing import List
|
|
|
|
|
from .preprocess import Compose
|
|
|
|
|
from .Bbox import Bbox
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Global dictionary
|
|
|
|
|
SUPPORT_MODELS = {
|
2025-02-28 19:56:49 +08:00
|
|
|
'YOLO',
|
|
|
|
|
'PPYOLOE',
|
|
|
|
|
'RCNN',
|
|
|
|
|
'SSD',
|
|
|
|
|
'Face',
|
|
|
|
|
'FCOS',
|
|
|
|
|
'SOLOv2',
|
|
|
|
|
'TTFNet',
|
|
|
|
|
'S2ANet',
|
|
|
|
|
'JDE',
|
|
|
|
|
'FairMOT',
|
|
|
|
|
'DeepSORT',
|
|
|
|
|
'GFL',
|
|
|
|
|
'PicoDet',
|
|
|
|
|
'CenterNet',
|
|
|
|
|
'TOOD',
|
|
|
|
|
'RetinaNet',
|
|
|
|
|
'StrongBaseline',
|
|
|
|
|
'STGCN',
|
|
|
|
|
'YOLOX',
|
|
|
|
|
'HRNet',
|
|
|
|
|
'DETR',
|
2024-04-21 00:05:14 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PredictConfig(object):
|
|
|
|
|
"""set config of preprocess, postprocess and visualize
|
|
|
|
|
Args:
|
|
|
|
|
infer_config (str): path of infer_cfg.yml
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, infer_config):
|
|
|
|
|
# parsing Yaml config for Preprocess
|
|
|
|
|
with open(infer_config) as f:
|
|
|
|
|
yml_conf = yaml.safe_load(f)
|
|
|
|
|
self.check_model(yml_conf)
|
|
|
|
|
self.arch = yml_conf['arch']
|
|
|
|
|
self.preprocess_infos = yml_conf['Preprocess']
|
|
|
|
|
self.min_subgraph_size = yml_conf['min_subgraph_size']
|
|
|
|
|
self.label_list = yml_conf['label_list']
|
|
|
|
|
self.use_dynamic_shape = yml_conf['use_dynamic_shape']
|
|
|
|
|
self.draw_threshold = yml_conf.get("draw_threshold", 0.5)
|
|
|
|
|
self.mask = yml_conf.get("mask", False)
|
|
|
|
|
self.tracker = yml_conf.get("tracker", None)
|
|
|
|
|
self.nms = yml_conf.get("NMS", None)
|
|
|
|
|
self.fpn_stride = yml_conf.get("fpn_stride", None)
|
|
|
|
|
|
|
|
|
|
color_pool = [(0, 255, 0), (255, 0, 0), (0, 0, 255), (255, 255, 0), (0, 255, 255)]
|
2025-02-28 19:56:49 +08:00
|
|
|
self.colors = {
|
|
|
|
|
label: color_pool[i % len(color_pool)] for i, label in enumerate(self.label_list)
|
|
|
|
|
}
|
2024-04-21 00:05:14 +08:00
|
|
|
|
|
|
|
|
if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
|
2025-02-28 19:56:49 +08:00
|
|
|
print('The RCNN export model is used for ONNX and it only supports batch_size = 1')
|
2024-04-21 00:05:14 +08:00
|
|
|
self.print_config()
|
|
|
|
|
|
|
|
|
|
def check_model(self, yml_conf):
|
|
|
|
|
"""
|
|
|
|
|
Raises:
|
|
|
|
|
ValueError: loaded model not in supported model type
|
|
|
|
|
"""
|
|
|
|
|
for support_model in SUPPORT_MODELS:
|
|
|
|
|
if support_model in yml_conf['arch']:
|
|
|
|
|
return True
|
2025-02-28 19:56:49 +08:00
|
|
|
raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf['arch'], SUPPORT_MODELS))
|
2024-04-21 00:05:14 +08:00
|
|
|
|
|
|
|
|
def print_config(self):
|
|
|
|
|
print('----------- Model Configuration -----------')
|
|
|
|
|
print('%s: %s' % ('Model Arch', self.arch))
|
|
|
|
|
print('%s: ' % ('Transform Order'))
|
|
|
|
|
for op_info in self.preprocess_infos:
|
|
|
|
|
print('--%s: %s' % ('transform op', op_info['type']))
|
|
|
|
|
print('--------------------------------------------')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def draw_bbox(image, outputs, infer_config):
|
|
|
|
|
for output in outputs:
|
|
|
|
|
cls_id, score, xmin, ymin, xmax, ymax = output
|
|
|
|
|
if score > infer_config.draw_threshold:
|
|
|
|
|
label = infer_config.label_list[int(cls_id)]
|
|
|
|
|
color = infer_config.colors[label]
|
|
|
|
|
cv2.rectangle(image, (int(xmin), int(ymin)), (int(xmax), int(ymax)), color, 2)
|
2025-02-28 19:56:49 +08:00
|
|
|
cv2.putText(
|
|
|
|
|
image,
|
|
|
|
|
"{}: {:.2f}".format(label, score),
|
|
|
|
|
(int(xmin), int(ymin - 5)),
|
|
|
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
|
|
|
0.5,
|
|
|
|
|
color,
|
|
|
|
|
2,
|
|
|
|
|
)
|
2024-04-21 00:05:14 +08:00
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def predict_image(imgsave_dir, infer_config, predictor, img_list):
|
|
|
|
|
# load preprocess transforms
|
|
|
|
|
transforms = Compose(infer_config.preprocess_infos)
|
|
|
|
|
errImgList = []
|
|
|
|
|
|
|
|
|
|
# Check and create subimg_save_dir if not exist
|
|
|
|
|
subimg_save_dir = os.path.join(imgsave_dir, 'subimages')
|
|
|
|
|
os.makedirs(subimg_save_dir, exist_ok=True)
|
|
|
|
|
|
2024-05-09 00:20:32 +08:00
|
|
|
first_image_skipped = False
|
|
|
|
|
total_time = 0
|
|
|
|
|
num_images = 0
|
2024-04-21 00:05:14 +08:00
|
|
|
# predict image
|
|
|
|
|
for img_path in tqdm(img_list):
|
|
|
|
|
img = cv2.imread(img_path)
|
|
|
|
|
if img is None:
|
|
|
|
|
print(f"Warning: Could not read image {img_path}. Skipping...")
|
|
|
|
|
errImgList.append(img_path)
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
inputs = transforms(img_path)
|
|
|
|
|
inputs_name = [var.name for var in predictor.get_inputs()]
|
2025-02-28 19:56:49 +08:00
|
|
|
inputs = {k: inputs[k][None,] for k in inputs_name}
|
2024-04-21 00:05:14 +08:00
|
|
|
|
2024-05-09 00:20:32 +08:00
|
|
|
# Start timing
|
|
|
|
|
start_time = time.time()
|
|
|
|
|
|
2024-04-21 00:05:14 +08:00
|
|
|
outputs = predictor.run(output_names=None, input_feed=inputs)
|
|
|
|
|
|
2024-05-09 00:20:32 +08:00
|
|
|
# Stop timing
|
|
|
|
|
end_time = time.time()
|
|
|
|
|
inference_time = end_time - start_time
|
|
|
|
|
if not first_image_skipped:
|
|
|
|
|
first_image_skipped = True
|
|
|
|
|
else:
|
|
|
|
|
total_time += inference_time
|
|
|
|
|
num_images += 1
|
2025-02-28 19:56:49 +08:00
|
|
|
print(
|
|
|
|
|
f"ONNXRuntime predict time for {os.path.basename(img_path)}: {inference_time:.4f} seconds"
|
|
|
|
|
)
|
2024-05-09 00:20:32 +08:00
|
|
|
|
2024-04-21 00:05:14 +08:00
|
|
|
print("ONNXRuntime predict: ")
|
|
|
|
|
if infer_config.arch in ["HRNet"]:
|
|
|
|
|
print(np.array(outputs[0]))
|
|
|
|
|
else:
|
|
|
|
|
bboxes = np.array(outputs[0])
|
|
|
|
|
for bbox in bboxes:
|
|
|
|
|
if bbox[0] > -1 and bbox[1] > infer_config.draw_threshold:
|
2025-02-28 19:56:49 +08:00
|
|
|
print(f"{int(bbox[0])} {bbox[1]} " f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}")
|
2024-04-21 00:05:14 +08:00
|
|
|
|
|
|
|
|
# Save the subimages (crop from the original image)
|
|
|
|
|
subimg_counter = 1
|
|
|
|
|
for output in np.array(outputs[0]):
|
|
|
|
|
cls_id, score, xmin, ymin, xmax, ymax = output
|
|
|
|
|
if score > infer_config.draw_threshold:
|
|
|
|
|
label = infer_config.label_list[int(cls_id)]
|
2025-02-28 19:56:49 +08:00
|
|
|
subimg = img[int(max(ymin, 0)) : int(ymax), int(max(xmin, 0)) : int(xmax)]
|
2024-04-21 00:05:14 +08:00
|
|
|
if len(subimg) == 0:
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
subimg_filename = f"{os.path.splitext(os.path.basename(img_path))[0]}_{label}_{xmin:.2f}_{ymin:.2f}_{xmax:.2f}_{ymax:.2f}.jpg"
|
|
|
|
|
subimg_path = os.path.join(subimg_save_dir, subimg_filename)
|
|
|
|
|
cv2.imwrite(subimg_path, subimg)
|
|
|
|
|
subimg_counter += 1
|
|
|
|
|
|
|
|
|
|
# Draw bounding boxes and save the image with bounding boxes
|
2024-05-09 00:20:32 +08:00
|
|
|
img_with_mask = img.copy()
|
|
|
|
|
for output in np.array(outputs[0]):
|
|
|
|
|
cls_id, score, xmin, ymin, xmax, ymax = output
|
|
|
|
|
if score > infer_config.draw_threshold:
|
2025-02-28 19:56:49 +08:00
|
|
|
cv2.rectangle(
|
|
|
|
|
img_with_mask,
|
|
|
|
|
(int(xmin), int(ymin)),
|
|
|
|
|
(int(xmax), int(ymax)),
|
|
|
|
|
(255, 255, 255),
|
|
|
|
|
-1,
|
|
|
|
|
) # 盖白
|
|
|
|
|
|
2024-04-21 00:05:14 +08:00
|
|
|
img_with_bbox = draw_bbox(img, np.array(outputs[0]), infer_config)
|
2024-05-09 00:20:32 +08:00
|
|
|
|
2024-04-21 00:05:14 +08:00
|
|
|
output_dir = imgsave_dir
|
|
|
|
|
os.makedirs(output_dir, exist_ok=True)
|
2024-05-09 00:20:32 +08:00
|
|
|
draw_box_dir = os.path.join(output_dir, 'draw_box')
|
|
|
|
|
mask_white_dir = os.path.join(output_dir, 'mask_white')
|
|
|
|
|
os.makedirs(draw_box_dir, exist_ok=True)
|
|
|
|
|
os.makedirs(mask_white_dir, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
output_file_mask = os.path.join(mask_white_dir, os.path.basename(img_path))
|
|
|
|
|
output_file_bbox = os.path.join(draw_box_dir, os.path.basename(img_path))
|
|
|
|
|
cv2.imwrite(output_file_mask, img_with_mask)
|
|
|
|
|
cv2.imwrite(output_file_bbox, img_with_bbox)
|
|
|
|
|
|
|
|
|
|
avg_time_per_image = total_time / num_images if num_images > 0 else 0
|
|
|
|
|
print(f"Total inference time for {num_images} images: {total_time:.4f} seconds")
|
|
|
|
|
print(f"Average time per image: {avg_time_per_image:.4f} seconds")
|
2024-04-21 00:05:14 +08:00
|
|
|
print("ErrorImgs:")
|
|
|
|
|
print(errImgList)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def predict(img_path: str, predictor, infer_config) -> List[Bbox]:
|
|
|
|
|
transforms = Compose(infer_config.preprocess_infos)
|
|
|
|
|
inputs = transforms(img_path)
|
|
|
|
|
inputs_name = [var.name for var in predictor.get_inputs()]
|
2025-02-28 19:56:49 +08:00
|
|
|
inputs = {k: inputs[k][None,] for k in inputs_name}
|
2024-04-21 00:05:14 +08:00
|
|
|
|
|
|
|
|
outputs = predictor.run(output_names=None, input_feed=inputs)[0]
|
|
|
|
|
res = []
|
|
|
|
|
for output in outputs:
|
|
|
|
|
cls_name = infer_config.label_list[int(output[0])]
|
|
|
|
|
score = output[1]
|
|
|
|
|
xmin = int(max(output[2], 0))
|
|
|
|
|
ymin = int(max(output[3], 0))
|
|
|
|
|
xmax = int(output[4])
|
|
|
|
|
ymax = int(output[5])
|
|
|
|
|
if score > infer_config.draw_threshold:
|
|
|
|
|
res.append(Bbox(xmin, ymin, ymax - ymin, xmax - xmin, cls_name, score))
|
|
|
|
|
|
|
|
|
|
return res
|