Files
TexTeller/src/models/ocr_model/train/train.py

108 lines
3.6 KiB
Python
Raw Normal View History

import os
2024-01-31 10:11:07 +00:00
import numpy as np
from functools import partial
from pathlib import Path
from datasets import load_dataset
2024-01-30 08:36:23 +00:00
from transformers import Trainer, TrainingArguments, Seq2SeqTrainer, Seq2SeqTrainingArguments, GenerationConfig
2024-01-31 10:11:07 +00:00
2024-01-30 08:36:23 +00:00
from .training_args import CONFIG
from ..model.TexTeller import TexTeller
2024-01-31 10:11:07 +00:00
from ..utils.functional import tokenize_fn, collate_fn, img_transform_fn
2024-01-30 08:36:23 +00:00
from ..utils.metrics import bleu_metric
from ....globals import MAX_TOKEN_SIZE
2024-01-30 08:36:23 +00:00
def train(model, tokenizer, train_dataset, eval_dataset, collate_fn_with_tokenizer):
training_args = TrainingArguments(**CONFIG)
trainer = Trainer(
model,
training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
data_collator=collate_fn_with_tokenizer,
)
trainer.train(resume_from_checkpoint=None)
2024-01-30 08:36:23 +00:00
def evaluate(model, tokenizer, eval_dataset, collate_fn):
eval_config = CONFIG.copy()
generate_config = GenerationConfig(
max_new_tokens=MAX_TOKEN_SIZE,
num_beams=1,
do_sample=False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
)
2024-01-31 10:11:07 +00:00
# eval_config['use_cpu'] = True
2024-01-30 08:36:23 +00:00
eval_config['output_dir'] = 'debug_dir'
eval_config['predict_with_generate'] = True
eval_config['predict_with_generate'] = True
eval_config['dataloader_num_workers'] = 1
eval_config['jit_mode_eval'] = False
eval_config['torch_compile'] = False
eval_config['auto_find_batch_size'] = False
eval_config['generation_config'] = generate_config
seq2seq_config = Seq2SeqTrainingArguments(**eval_config)
trainer = Seq2SeqTrainer(
model,
seq2seq_config,
2024-01-31 10:11:07 +00:00
eval_dataset=eval_dataset,
2024-01-30 08:36:23 +00:00
tokenizer=tokenizer,
data_collator=collate_fn,
compute_metrics=partial(bleu_metric, tokenizer=tokenizer)
)
2024-01-30 08:36:23 +00:00
res = trainer.evaluate()
pause = 1
2024-01-30 08:36:23 +00:00
...
if __name__ == '__main__':
cur_path = os.getcwd()
script_dirpath = Path(__file__).resolve().parent
os.chdir(script_dirpath)
2024-01-30 08:36:23 +00:00
2024-01-31 10:11:07 +00:00
# dataset = load_dataset(
# '/home/lhy/code/TeXify/src/models/ocr_model/train/dataset/latex-formulas/latex-formulas.py',
# 'cleaned_formulas'
# )['train']
2024-01-30 08:36:23 +00:00
dataset = load_dataset(
'/home/lhy/code/TeXify/src/models/ocr_model/train/dataset/latex-formulas/latex-formulas.py',
'cleaned_formulas'
2024-01-31 10:11:07 +00:00
)['train'].select(range(1000))
2024-01-30 08:36:23 +00:00
tokenizer = TexTeller.get_tokenizer('/home/lhy/code/TeXify/src/models/tokenizer/roberta-tokenizer-550Kformulas')
map_fn = partial(tokenize_fn, tokenizer=tokenizer)
2024-01-31 10:11:07 +00:00
# tokenized_dataset = dataset.map(map_fn, batched=True, remove_columns=dataset.column_names, num_proc=8, load_from_cache_file=False)
tokenized_dataset = dataset.map(map_fn, batched=True, remove_columns=dataset.column_names, num_proc=1, load_from_cache_file=False)
tokenized_dataset = tokenized_dataset.with_transform(img_transform_fn)
2024-01-30 08:36:23 +00:00
split_dataset = tokenized_dataset.train_test_split(test_size=0.05, seed=42)
train_dataset, eval_dataset = split_dataset['train'], split_dataset['test']
collate_fn_with_tokenizer = partial(collate_fn, tokenizer=tokenizer)
# model = TexTeller()
2024-01-31 10:11:07 +00:00
model = TexTeller.from_pretrained('/home/lhy/code/TeXify/src/models/ocr_model/train/train_result/checkpoint-80500')
2024-01-30 08:36:23 +00:00
enable_train = False
enable_evaluate = True
if enable_train:
train(model, tokenizer, train_dataset, eval_dataset, collate_fn_with_tokenizer)
if enable_evaluate:
evaluate(model, tokenizer, eval_dataset, collate_fn_with_tokenizer)
os.chdir(cur_path)