Files
TexTeller/texteller/server.py

156 lines
5.3 KiB
Python
Raw Normal View History

2024-06-22 21:51:51 +08:00
import sys
2024-02-11 08:06:50 +00:00
import argparse
2024-06-17 21:03:08 +08:00
import tempfile
2024-02-11 08:06:50 +00:00
import time
import numpy as np
import cv2
2024-02-11 08:06:50 +00:00
2024-06-17 21:03:08 +08:00
from pathlib import Path
2024-02-11 08:06:50 +00:00
from starlette.requests import Request
from ray import serve
from ray.serve.handle import DeploymentHandle
2024-06-17 21:03:08 +08:00
from onnxruntime import InferenceSession
2024-02-11 08:06:50 +00:00
2024-06-17 21:03:08 +08:00
from models.ocr_model.utils.inference import inference as rec_inference
from models.det_model.inference import predict as det_inference
2024-02-11 08:06:50 +00:00
from models.ocr_model.model.TexTeller import TexTeller
2024-06-17 21:03:08 +08:00
from models.det_model.inference import PredictConfig
from models.ocr_model.utils.to_katex import to_katex
2024-02-11 08:06:50 +00:00
2024-06-22 21:51:51 +08:00
PYTHON_VERSION = str(sys.version_info.major) + '.' + str(sys.version_info.minor)
LIBPATH = Path(sys.executable).parent.parent / 'lib' / ('python' + PYTHON_VERSION) / 'site-packages'
CUDNNPATH = LIBPATH / 'nvidia' / 'cudnn' / 'lib'
2024-02-11 08:06:50 +00:00
parser = argparse.ArgumentParser()
parser.add_argument('-ckpt', '--checkpoint_dir', type=str)
parser.add_argument('-tknz', '--tokenizer_dir', type=str)
2024-02-11 08:06:50 +00:00
parser.add_argument('-port', '--server_port', type=int, default=8000)
parser.add_argument('--num_replicas', type=int, default=1)
parser.add_argument('--ncpu_per_replica', type=float, default=1.0)
parser.add_argument('--ngpu_per_replica', type=float, default=0.0)
parser.add_argument('--inference-mode', type=str, default='cpu')
parser.add_argument('--num_beams', type=int, default=1)
2024-06-22 21:51:51 +08:00
parser.add_argument('-onnx', action='store_true', help='using onnx runtime')
2024-02-11 08:06:50 +00:00
args = parser.parse_args()
if args.ngpu_per_replica > 0 and not args.inference_mode == 'cuda':
raise ValueError("--inference-mode must be cuda or mps if ngpu_per_replica > 0")
2024-02-11 08:06:50 +00:00
@serve.deployment(
num_replicas=args.num_replicas,
2024-02-11 08:06:50 +00:00
ray_actor_options={
"num_cpus": args.ncpu_per_replica,
"num_gpus": args.ngpu_per_replica * 1.0 / 2,
},
2024-02-11 08:06:50 +00:00
)
2024-06-17 21:03:08 +08:00
class TexTellerRecServer:
2024-02-11 08:06:50 +00:00
def __init__(
self,
checkpoint_path: str,
tokenizer_path: str,
inf_mode: str = 'cpu',
2024-06-22 21:51:51 +08:00
use_onnx: bool = False,
num_beams: int = 1,
2024-02-11 08:06:50 +00:00
) -> None:
self.model = TexTeller.from_pretrained(
checkpoint_path, use_onnx=use_onnx, onnx_provider=inf_mode
)
2024-02-11 08:06:50 +00:00
self.tokenizer = TexTeller.get_tokenizer(tokenizer_path)
self.inf_mode = inf_mode
self.num_beams = num_beams
2024-02-11 08:06:50 +00:00
2024-06-22 21:51:51 +08:00
if not use_onnx:
self.model = self.model.to(inf_mode) if inf_mode != 'cpu' else self.model
def predict(self, image_nparray) -> str:
return to_katex(
rec_inference(
self.model,
self.tokenizer,
[image_nparray],
accelerator=self.inf_mode,
num_beams=self.num_beams,
)[0]
)
2024-02-11 08:06:50 +00:00
2024-06-22 21:51:51 +08:00
@serve.deployment(
num_replicas=args.num_replicas,
2024-06-22 21:51:51 +08:00
ray_actor_options={
"num_cpus": args.ncpu_per_replica,
2024-06-22 21:51:51 +08:00
"num_gpus": args.ngpu_per_replica * 1.0 / 2,
"runtime_env": {"env_vars": {"LD_LIBRARY_PATH": f"{str(CUDNNPATH)}/:$LD_LIBRARY_PATH"}},
2024-06-22 21:51:51 +08:00
},
)
2024-06-17 21:03:08 +08:00
class TexTellerDetServer:
def __init__(self, inf_mode='cpu'):
2024-06-17 21:03:08 +08:00
self.infer_config = PredictConfig("./models/det_model/model/infer_cfg.yml")
2024-06-22 21:51:51 +08:00
self.latex_det_model = InferenceSession(
"./models/det_model/model/rtdetr_r50vd_6x_coco.onnx",
providers=['CUDAExecutionProvider'] if inf_mode == 'cuda' else ['CPUExecutionProvider'],
2024-06-22 21:51:51 +08:00
)
2024-06-17 21:03:08 +08:00
async def predict(self, image_nparray) -> str:
with tempfile.TemporaryDirectory() as temp_dir:
img_path = f"{temp_dir}/temp_image.jpg"
cv2.imwrite(img_path, image_nparray)
2024-06-17 21:03:08 +08:00
latex_bboxes = det_inference(img_path, self.latex_det_model, self.infer_config)
return latex_bboxes
2024-02-11 08:06:50 +00:00
@serve.deployment()
class Ingress:
2024-06-17 21:03:08 +08:00
def __init__(self, det_server: DeploymentHandle, rec_server: DeploymentHandle) -> None:
self.det_server = det_server
self.texteller_server = rec_server
2024-02-11 08:06:50 +00:00
async def __call__(self, request: Request) -> str:
2024-06-17 21:03:08 +08:00
request_path = request.url.path
form = await request.form()
img_rb = await form['img'].read()
img_nparray = np.frombuffer(img_rb, np.uint8)
2024-02-27 07:44:35 +00:00
img_nparray = cv2.imdecode(img_nparray, cv2.IMREAD_COLOR)
img_nparray = cv2.cvtColor(img_nparray, cv2.COLOR_BGR2RGB)
2024-06-17 21:03:08 +08:00
if request_path.startswith("/fdet"):
if self.det_server is None:
2024-06-17 21:03:08 +08:00
return "[ERROR] rtdetr_r50vd_6x_coco.onnx not found."
pred = await self.det_server.predict.remote(img_nparray)
return pred
elif request_path.startswith("/frec"):
pred = await self.texteller_server.predict.remote(img_nparray)
return pred
else:
return "[ERROR] Invalid request path"
2024-02-11 08:06:50 +00:00
if __name__ == '__main__':
ckpt_dir = args.checkpoint_dir
tknz_dir = args.tokenizer_dir
serve.start(http_options={"host": "0.0.0.0", "port": args.server_port})
2024-06-17 21:03:08 +08:00
rec_server = TexTellerRecServer.bind(
ckpt_dir,
tknz_dir,
inf_mode=args.inference_mode,
2024-06-22 21:51:51 +08:00
use_onnx=args.onnx,
num_beams=args.num_beams,
)
2024-06-17 21:03:08 +08:00
det_server = None
if Path('./models/det_model/model/rtdetr_r50vd_6x_coco.onnx').exists():
2024-06-22 21:51:51 +08:00
det_server = TexTellerDetServer.bind(args.inference_mode)
2024-06-17 21:03:08 +08:00
ingress = Ingress.bind(det_server, rec_server)
2024-02-11 08:06:50 +00:00
# ingress_handle = serve.run(ingress, route_prefix="/predict")
ingress_handle = serve.run(ingress, route_prefix="/")
2024-02-11 08:06:50 +00:00
while True:
time.sleep(1)