Files
TexTeller/examples/train_texteller/utils/transforms.py

155 lines
5.1 KiB
Python
Raw Normal View History

2025-04-19 16:29:49 +00:00
import torch
import random
import numpy as np
import cv2
from torchvision.transforms import v2
from typing import Any
from PIL import Image
from collections import Counter
from texteller.constants import (
IMG_CHANNELS,
MAX_RESIZE_RATIO,
MIN_RESIZE_RATIO,
)
from texteller.utils import transform as inference_transform
from .augraphy_pipe import get_custom_augraphy
augraphy_pipeline = get_custom_augraphy()
def trim_white_border(image: np.ndarray):
if len(image.shape) != 3 or image.shape[2] != 3:
raise ValueError("Image is not in RGB format or channel is not in third dimension")
if image.dtype != np.uint8:
raise ValueError(f"Image should stored in uint8")
corners = [tuple(image[0, 0]), tuple(image[0, -1]), tuple(image[-1, 0]), tuple(image[-1, -1])]
bg_color = Counter(corners).most_common(1)[0][0]
bg_color_np = np.array(bg_color, dtype=np.uint8)
h, w = image.shape[:2]
bg = np.full((h, w, 3), bg_color_np, dtype=np.uint8)
diff = cv2.absdiff(image, bg)
mask = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
threshold = 15
_, diff = cv2.threshold(mask, threshold, 255, cv2.THRESH_BINARY)
x, y, w, h = cv2.boundingRect(diff)
trimmed_image = image[y : y + h, x : x + w]
return trimmed_image
def add_white_border(image: np.ndarray, max_size: int) -> np.ndarray:
randi = [random.randint(0, max_size) for _ in range(4)]
pad_height_size = randi[1] + randi[3]
pad_width_size = randi[0] + randi[2]
if pad_height_size + image.shape[0] < 30:
compensate_height = int((30 - (pad_height_size + image.shape[0])) * 0.5) + 1
randi[1] += compensate_height
randi[3] += compensate_height
if pad_width_size + image.shape[1] < 30:
compensate_width = int((30 - (pad_width_size + image.shape[1])) * 0.5) + 1
randi[0] += compensate_width
randi[2] += compensate_width
return v2.functional.pad(
torch.from_numpy(image).permute(2, 0, 1),
padding=randi,
padding_mode="constant",
fill=(255, 255, 255),
)
def padding(images: list[torch.Tensor], required_size: int) -> list[torch.Tensor]:
images = [
v2.functional.pad(
img, padding=[0, 0, required_size - img.shape[2], required_size - img.shape[1]]
)
for img in images
]
return images
def random_resize(images: list[np.ndarray], minr: float, maxr: float) -> list[np.ndarray]:
if len(images[0].shape) != 3 or images[0].shape[2] != 3:
raise ValueError("Image is not in RGB format or channel is not in third dimension")
ratios = [random.uniform(minr, maxr) for _ in range(len(images))]
return [
# Anti-aliasing
cv2.resize(
img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LANCZOS4
)
for img, r in zip(images, ratios)
]
def rotate(image: np.ndarray, min_angle: int, max_angle: int) -> np.ndarray:
# Get the center of the image to define the point of rotation
image_center = tuple(np.array(image.shape[1::-1]) / 2)
# Generate a random angle within the specified range
angle = random.randint(min_angle, max_angle)
# Get the rotation matrix for rotating the image around its center
rotation_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
# Determine the size of the rotated image
cos = np.abs(rotation_mat[0, 0])
sin = np.abs(rotation_mat[0, 1])
new_width = int((image.shape[0] * sin) + (image.shape[1] * cos))
new_height = int((image.shape[0] * cos) + (image.shape[1] * sin))
# Adjust the rotation matrix to take into account translation
rotation_mat[0, 2] += (new_width / 2) - image_center[0]
rotation_mat[1, 2] += (new_height / 2) - image_center[1]
# Rotate the image with the specified border color (white in this case)
rotated_image = cv2.warpAffine(
image, rotation_mat, (new_width, new_height), borderValue=(255, 255, 255)
)
return rotated_image
def ocr_aug(image: np.ndarray) -> np.ndarray:
if random.random() < 0.2:
image = rotate(image, -5, 5)
image = add_white_border(image, max_size=25).permute(1, 2, 0).numpy()
image = augraphy_pipeline(image)
return image
def train_transform(images: list[Image.Image]) -> list[torch.Tensor]:
assert IMG_CHANNELS == 1, "Only support grayscale images for now"
images = [np.array(img.convert("RGB")) for img in images]
# random resize first
images = random_resize(images, MIN_RESIZE_RATIO, MAX_RESIZE_RATIO)
images = [trim_white_border(image) for image in images]
# OCR augmentation
images = [ocr_aug(image) for image in images]
# general transform pipeline
images = inference_transform(images)
return images
def img_train_transform(samples: dict[str, list[Any]]) -> dict[str, list[Any]]:
processed_img = train_transform(samples["pixel_values"])
samples["pixel_values"] = processed_img
return samples
def img_inf_transform(samples: dict[str, list[Any]]) -> dict[str, list[Any]]:
processed_img = inference_transform(samples["pixel_values"])
samples["pixel_values"] = processed_img
return samples