Files
TexTeller/texteller/utils/image.py

122 lines
3.9 KiB
Python
Raw Normal View History

2025-04-16 14:23:02 +00:00
from collections import Counter
from typing import List, Union
import cv2
import numpy as np
import torch
from PIL import Image
from torchvision.transforms import v2
from texteller.constants import (
FIXED_IMG_SIZE,
IMG_CHANNELS,
IMAGE_MEAN,
IMAGE_STD,
)
from texteller.logger import get_logger
_logger = get_logger()
def readimgs(image_paths: list[str]) -> list[np.ndarray]:
"""
Read and preprocess a list of images from their file paths.
This function reads each image from the provided paths, handles different
bit depths (converting 16-bit to 8-bit if necessary), and normalizes color
channels to RGB format regardless of the original color space (BGR, BGRA,
or grayscale).
Args:
image_paths (list[str]): A list of file paths to the images to be read.
Returns:
list[np.ndarray]: A list of NumPy arrays containing the preprocessed images
in RGB format. Images that could not be read are skipped.
"""
processed_images = []
for path in image_paths:
image = cv2.imread(path, cv2.IMREAD_UNCHANGED)
if image is None:
raise ValueError(f"Image at {path} could not be read.")
if image.dtype == np.uint16:
_logger.warning(f'Converting {path} to 8-bit, image may be lossy.')
image = cv2.convertScaleAbs(image, alpha=(255.0 / 65535.0))
channels = 1 if len(image.shape) == 2 else image.shape[2]
if channels == 4:
image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGB)
elif channels == 1:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
elif channels == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
processed_images.append(image)
return processed_images
def trim_white_border(image: np.ndarray) -> np.ndarray:
if len(image.shape) != 3 or image.shape[2] != 3:
raise ValueError("Image is not in RGB format or channel is not in third dimension")
if image.dtype != np.uint8:
raise ValueError(f"Image should stored in uint8")
corners = [tuple(image[0, 0]), tuple(image[0, -1]), tuple(image[-1, 0]), tuple(image[-1, -1])]
bg_color = Counter(corners).most_common(1)[0][0]
bg_color_np = np.array(bg_color, dtype=np.uint8)
h, w = image.shape[:2]
bg = np.full((h, w, 3), bg_color_np, dtype=np.uint8)
diff = cv2.absdiff(image, bg)
mask = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
threshold = 15
_, diff = cv2.threshold(mask, threshold, 255, cv2.THRESH_BINARY)
x, y, w, h = cv2.boundingRect(diff)
trimmed_image = image[y : y + h, x : x + w]
return trimmed_image
def padding(images: List[torch.Tensor], required_size: int) -> List[torch.Tensor]:
images = [
v2.functional.pad(
img, padding=[0, 0, required_size - img.shape[2], required_size - img.shape[1]]
)
for img in images
]
return images
def transform(images: List[Union[np.ndarray, Image.Image]]) -> List[torch.Tensor]:
general_transform_pipeline = v2.Compose(
[
v2.ToImage(),
v2.ToDtype(torch.uint8, scale=True),
v2.Grayscale(),
v2.Resize(
size=FIXED_IMG_SIZE - 1,
interpolation=v2.InterpolationMode.BICUBIC,
max_size=FIXED_IMG_SIZE,
antialias=True,
),
v2.ToDtype(torch.float32, scale=True), # Normalize expects float input
v2.Normalize(mean=[IMAGE_MEAN], std=[IMAGE_STD]),
]
)
assert IMG_CHANNELS == 1, "Only support grayscale images for now"
images = [
np.array(img.convert('RGB')) if isinstance(img, Image.Image) else img for img in images
]
images = [trim_white_border(image) for image in images]
images = [general_transform_pipeline(image) for image in images]
images = padding(images, FIXED_IMG_SIZE)
return images