2024-05-27 16:48:42 +00:00
|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
import os
|
|
|
|
|
import sys
|
|
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
|
sys.path.append(__dir__)
|
|
|
|
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "../..")))
|
|
|
|
|
|
|
|
|
|
os.environ["FLAGS_allocator_strategy"] = "auto_growth"
|
|
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
|
import numpy as np
|
|
|
|
|
import math
|
|
|
|
|
import time
|
|
|
|
|
|
|
|
|
|
import utility
|
|
|
|
|
from utility import get_logger
|
|
|
|
|
|
|
|
|
|
from CTCLabelDecode import CTCLabelDecode
|
|
|
|
|
|
|
|
|
|
logger = get_logger()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TextRecognizer(object):
|
|
|
|
|
def __init__(self, args):
|
|
|
|
|
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
|
|
|
|
|
self.rec_batch_num = args.rec_batch_num
|
|
|
|
|
self.rec_algorithm = args.rec_algorithm
|
2025-02-28 19:56:49 +08:00
|
|
|
self.postprocess_op = CTCLabelDecode(
|
|
|
|
|
character_dict_path=args.rec_char_dict_path, use_space_char=args.use_space_char
|
|
|
|
|
)
|
2024-05-27 16:48:42 +00:00
|
|
|
(
|
|
|
|
|
self.predictor,
|
|
|
|
|
self.input_tensor,
|
|
|
|
|
self.output_tensors,
|
|
|
|
|
self.config,
|
|
|
|
|
) = utility.create_predictor(args, "rec", logger)
|
|
|
|
|
self.benchmark = args.benchmark
|
|
|
|
|
self.use_onnx = args.use_onnx
|
|
|
|
|
self.return_word_box = args.return_word_box
|
|
|
|
|
|
|
|
|
|
def resize_norm_img(self, img, max_wh_ratio):
|
|
|
|
|
imgC, imgH, imgW = self.rec_image_shape
|
|
|
|
|
if self.rec_algorithm == "NRTR" or self.rec_algorithm == "ViTSTR":
|
|
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
# return padding_im
|
|
|
|
|
image_pil = Image.fromarray(np.uint8(img))
|
|
|
|
|
if self.rec_algorithm == "ViTSTR":
|
|
|
|
|
img = image_pil.resize([imgW, imgH], Image.BICUBIC)
|
|
|
|
|
else:
|
|
|
|
|
img = image_pil.resize([imgW, imgH], Image.Resampling.LANCZOS)
|
|
|
|
|
img = np.array(img)
|
|
|
|
|
norm_img = np.expand_dims(img, -1)
|
|
|
|
|
norm_img = norm_img.transpose((2, 0, 1))
|
|
|
|
|
if self.rec_algorithm == "ViTSTR":
|
|
|
|
|
norm_img = norm_img.astype(np.float32) / 255.0
|
|
|
|
|
else:
|
|
|
|
|
norm_img = norm_img.astype(np.float32) / 128.0 - 1.0
|
|
|
|
|
return norm_img
|
|
|
|
|
elif self.rec_algorithm == "RFL":
|
|
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
resized_image = cv2.resize(img, (imgW, imgH), interpolation=cv2.INTER_CUBIC)
|
|
|
|
|
resized_image = resized_image.astype("float32")
|
|
|
|
|
resized_image = resized_image / 255
|
|
|
|
|
resized_image = resized_image[np.newaxis, :]
|
|
|
|
|
resized_image -= 0.5
|
|
|
|
|
resized_image /= 0.5
|
|
|
|
|
return resized_image
|
|
|
|
|
|
|
|
|
|
assert imgC == img.shape[2]
|
|
|
|
|
imgW = int((imgH * max_wh_ratio))
|
|
|
|
|
if self.use_onnx:
|
|
|
|
|
w = self.input_tensor.shape[3:][0]
|
|
|
|
|
if isinstance(w, str):
|
|
|
|
|
pass
|
|
|
|
|
elif w is not None and w > 0:
|
|
|
|
|
imgW = w
|
|
|
|
|
h, w = img.shape[:2]
|
|
|
|
|
ratio = w / float(h)
|
|
|
|
|
if math.ceil(imgH * ratio) > imgW:
|
|
|
|
|
resized_w = imgW
|
|
|
|
|
else:
|
|
|
|
|
resized_w = int(math.ceil(imgH * ratio))
|
|
|
|
|
if self.rec_algorithm == "RARE":
|
|
|
|
|
if resized_w > self.rec_image_shape[2]:
|
|
|
|
|
resized_w = self.rec_image_shape[2]
|
|
|
|
|
imgW = self.rec_image_shape[2]
|
|
|
|
|
resized_image = cv2.resize(img, (resized_w, imgH))
|
|
|
|
|
resized_image = resized_image.astype("float32")
|
|
|
|
|
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
|
|
|
|
resized_image -= 0.5
|
|
|
|
|
resized_image /= 0.5
|
|
|
|
|
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
|
|
|
|
|
padding_im[:, :, 0:resized_w] = resized_image
|
|
|
|
|
return padding_im
|
|
|
|
|
|
|
|
|
|
def resize_norm_img_vl(self, img, image_shape):
|
|
|
|
|
imgC, imgH, imgW = image_shape
|
|
|
|
|
img = img[:, :, ::-1] # bgr2rgb
|
|
|
|
|
resized_image = cv2.resize(img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
resized_image = resized_image.astype("float32")
|
|
|
|
|
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
|
|
|
|
return resized_image
|
|
|
|
|
|
|
|
|
|
def resize_norm_img_srn(self, img, image_shape):
|
|
|
|
|
imgC, imgH, imgW = image_shape
|
|
|
|
|
|
|
|
|
|
img_black = np.zeros((imgH, imgW))
|
|
|
|
|
im_hei = img.shape[0]
|
|
|
|
|
im_wid = img.shape[1]
|
|
|
|
|
|
|
|
|
|
if im_wid <= im_hei * 1:
|
|
|
|
|
img_new = cv2.resize(img, (imgH * 1, imgH))
|
|
|
|
|
elif im_wid <= im_hei * 2:
|
|
|
|
|
img_new = cv2.resize(img, (imgH * 2, imgH))
|
|
|
|
|
elif im_wid <= im_hei * 3:
|
|
|
|
|
img_new = cv2.resize(img, (imgH * 3, imgH))
|
|
|
|
|
else:
|
|
|
|
|
img_new = cv2.resize(img, (imgW, imgH))
|
|
|
|
|
|
|
|
|
|
img_np = np.asarray(img_new)
|
|
|
|
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
img_black[:, 0 : img_np.shape[1]] = img_np
|
|
|
|
|
img_black = img_black[:, :, np.newaxis]
|
|
|
|
|
|
|
|
|
|
row, col, c = img_black.shape
|
|
|
|
|
c = 1
|
|
|
|
|
|
|
|
|
|
return np.reshape(img_black, (c, row, col)).astype(np.float32)
|
|
|
|
|
|
|
|
|
|
def srn_other_inputs(self, image_shape, num_heads, max_text_length):
|
|
|
|
|
imgC, imgH, imgW = image_shape
|
|
|
|
|
feature_dim = int((imgH / 8) * (imgW / 8))
|
|
|
|
|
|
2025-02-28 19:56:49 +08:00
|
|
|
encoder_word_pos = np.array(range(0, feature_dim)).reshape((feature_dim, 1)).astype("int64")
|
2024-05-27 16:48:42 +00:00
|
|
|
gsrm_word_pos = (
|
2025-02-28 19:56:49 +08:00
|
|
|
np.array(range(0, max_text_length)).reshape((max_text_length, 1)).astype("int64")
|
2024-05-27 16:48:42 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
|
|
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
|
|
|
|
|
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
|
|
|
|
|
[-1, 1, max_text_length, max_text_length]
|
|
|
|
|
)
|
|
|
|
|
gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1, [1, num_heads, 1, 1]).astype(
|
|
|
|
|
"float32"
|
|
|
|
|
) * [-1e9]
|
|
|
|
|
|
|
|
|
|
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
|
|
|
|
|
[-1, 1, max_text_length, max_text_length]
|
|
|
|
|
)
|
|
|
|
|
gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2, [1, num_heads, 1, 1]).astype(
|
|
|
|
|
"float32"
|
|
|
|
|
) * [-1e9]
|
|
|
|
|
|
|
|
|
|
encoder_word_pos = encoder_word_pos[np.newaxis, :]
|
|
|
|
|
gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
|
|
|
|
|
|
|
|
|
|
return [
|
|
|
|
|
encoder_word_pos,
|
|
|
|
|
gsrm_word_pos,
|
|
|
|
|
gsrm_slf_attn_bias1,
|
|
|
|
|
gsrm_slf_attn_bias2,
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
def process_image_srn(self, img, image_shape, num_heads, max_text_length):
|
|
|
|
|
norm_img = self.resize_norm_img_srn(img, image_shape)
|
|
|
|
|
norm_img = norm_img[np.newaxis, :]
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|
encoder_word_pos,
|
|
|
|
|
gsrm_word_pos,
|
|
|
|
|
gsrm_slf_attn_bias1,
|
|
|
|
|
gsrm_slf_attn_bias2,
|
|
|
|
|
] = self.srn_other_inputs(image_shape, num_heads, max_text_length)
|
|
|
|
|
|
|
|
|
|
gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
|
|
|
|
|
gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
|
|
|
|
|
encoder_word_pos = encoder_word_pos.astype(np.int64)
|
|
|
|
|
gsrm_word_pos = gsrm_word_pos.astype(np.int64)
|
|
|
|
|
|
|
|
|
|
return (
|
|
|
|
|
norm_img,
|
|
|
|
|
encoder_word_pos,
|
|
|
|
|
gsrm_word_pos,
|
|
|
|
|
gsrm_slf_attn_bias1,
|
|
|
|
|
gsrm_slf_attn_bias2,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def resize_norm_img_sar(self, img, image_shape, width_downsample_ratio=0.25):
|
|
|
|
|
imgC, imgH, imgW_min, imgW_max = image_shape
|
|
|
|
|
h = img.shape[0]
|
|
|
|
|
w = img.shape[1]
|
|
|
|
|
valid_ratio = 1.0
|
|
|
|
|
# make sure new_width is an integral multiple of width_divisor.
|
|
|
|
|
width_divisor = int(1 / width_downsample_ratio)
|
|
|
|
|
# resize
|
|
|
|
|
ratio = w / float(h)
|
|
|
|
|
resize_w = math.ceil(imgH * ratio)
|
|
|
|
|
if resize_w % width_divisor != 0:
|
|
|
|
|
resize_w = round(resize_w / width_divisor) * width_divisor
|
|
|
|
|
if imgW_min is not None:
|
|
|
|
|
resize_w = max(imgW_min, resize_w)
|
|
|
|
|
if imgW_max is not None:
|
|
|
|
|
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
|
|
|
|
|
resize_w = min(imgW_max, resize_w)
|
|
|
|
|
resized_image = cv2.resize(img, (resize_w, imgH))
|
|
|
|
|
resized_image = resized_image.astype("float32")
|
|
|
|
|
# norm
|
|
|
|
|
if image_shape[0] == 1:
|
|
|
|
|
resized_image = resized_image / 255
|
|
|
|
|
resized_image = resized_image[np.newaxis, :]
|
|
|
|
|
else:
|
|
|
|
|
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
|
|
|
|
resized_image -= 0.5
|
|
|
|
|
resized_image /= 0.5
|
|
|
|
|
resize_shape = resized_image.shape
|
|
|
|
|
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
|
|
|
|
|
padding_im[:, :, 0:resize_w] = resized_image
|
|
|
|
|
pad_shape = padding_im.shape
|
|
|
|
|
|
|
|
|
|
return padding_im, resize_shape, pad_shape, valid_ratio
|
|
|
|
|
|
|
|
|
|
def resize_norm_img_spin(self, img):
|
|
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
# return padding_im
|
|
|
|
|
img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC)
|
|
|
|
|
img = np.array(img, np.float32)
|
|
|
|
|
img = np.expand_dims(img, -1)
|
|
|
|
|
img = img.transpose((2, 0, 1))
|
|
|
|
|
mean = [127.5]
|
|
|
|
|
std = [127.5]
|
|
|
|
|
mean = np.array(mean, dtype=np.float32)
|
|
|
|
|
std = np.array(std, dtype=np.float32)
|
|
|
|
|
mean = np.float32(mean.reshape(1, -1))
|
|
|
|
|
stdinv = 1 / np.float32(std.reshape(1, -1))
|
|
|
|
|
img -= mean
|
|
|
|
|
img *= stdinv
|
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
def resize_norm_img_svtr(self, img, image_shape):
|
|
|
|
|
imgC, imgH, imgW = image_shape
|
|
|
|
|
resized_image = cv2.resize(img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
resized_image = resized_image.astype("float32")
|
|
|
|
|
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
|
|
|
|
resized_image -= 0.5
|
|
|
|
|
resized_image /= 0.5
|
|
|
|
|
return resized_image
|
|
|
|
|
|
|
|
|
|
def resize_norm_img_cppd_padding(
|
|
|
|
|
self, img, image_shape, padding=True, interpolation=cv2.INTER_LINEAR
|
|
|
|
|
):
|
|
|
|
|
imgC, imgH, imgW = image_shape
|
|
|
|
|
h = img.shape[0]
|
|
|
|
|
w = img.shape[1]
|
|
|
|
|
if not padding:
|
|
|
|
|
resized_image = cv2.resize(img, (imgW, imgH), interpolation=interpolation)
|
|
|
|
|
resized_w = imgW
|
|
|
|
|
else:
|
|
|
|
|
ratio = w / float(h)
|
|
|
|
|
if math.ceil(imgH * ratio) > imgW:
|
|
|
|
|
resized_w = imgW
|
|
|
|
|
else:
|
|
|
|
|
resized_w = int(math.ceil(imgH * ratio))
|
|
|
|
|
resized_image = cv2.resize(img, (resized_w, imgH))
|
|
|
|
|
resized_image = resized_image.astype("float32")
|
|
|
|
|
if image_shape[0] == 1:
|
|
|
|
|
resized_image = resized_image / 255
|
|
|
|
|
resized_image = resized_image[np.newaxis, :]
|
|
|
|
|
else:
|
|
|
|
|
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
|
|
|
|
resized_image -= 0.5
|
|
|
|
|
resized_image /= 0.5
|
|
|
|
|
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
|
|
|
|
|
padding_im[:, :, 0:resized_w] = resized_image
|
|
|
|
|
|
|
|
|
|
return padding_im
|
|
|
|
|
|
|
|
|
|
def resize_norm_img_abinet(self, img, image_shape):
|
|
|
|
|
imgC, imgH, imgW = image_shape
|
|
|
|
|
|
|
|
|
|
resized_image = cv2.resize(img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
resized_image = resized_image.astype("float32")
|
|
|
|
|
resized_image = resized_image / 255.0
|
|
|
|
|
|
|
|
|
|
mean = np.array([0.485, 0.456, 0.406])
|
|
|
|
|
std = np.array([0.229, 0.224, 0.225])
|
|
|
|
|
resized_image = (resized_image - mean[None, None, ...]) / std[None, None, ...]
|
|
|
|
|
resized_image = resized_image.transpose((2, 0, 1))
|
|
|
|
|
resized_image = resized_image.astype("float32")
|
|
|
|
|
|
|
|
|
|
return resized_image
|
|
|
|
|
|
|
|
|
|
def norm_img_can(self, img, image_shape):
|
|
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # CAN only predict gray scale image
|
|
|
|
|
|
|
|
|
|
if self.inverse:
|
|
|
|
|
img = 255 - img
|
|
|
|
|
|
|
|
|
|
if self.rec_image_shape[0] == 1:
|
|
|
|
|
h, w = img.shape
|
|
|
|
|
_, imgH, imgW = self.rec_image_shape
|
|
|
|
|
if h < imgH or w < imgW:
|
|
|
|
|
padding_h = max(imgH - h, 0)
|
|
|
|
|
padding_w = max(imgW - w, 0)
|
|
|
|
|
img_padded = np.pad(
|
|
|
|
|
img,
|
|
|
|
|
((0, padding_h), (0, padding_w)),
|
|
|
|
|
"constant",
|
|
|
|
|
constant_values=(255),
|
|
|
|
|
)
|
|
|
|
|
img = img_padded
|
|
|
|
|
|
|
|
|
|
img = np.expand_dims(img, 0) / 255.0 # h,w,c -> c,h,w
|
|
|
|
|
img = img.astype("float32")
|
|
|
|
|
|
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
def __call__(self, img_list):
|
|
|
|
|
img_num = len(img_list)
|
|
|
|
|
# Calculate the aspect ratio of all text bars
|
|
|
|
|
width_list = []
|
|
|
|
|
for img in img_list:
|
|
|
|
|
width_list.append(img.shape[1] / float(img.shape[0]))
|
|
|
|
|
# Sorting can speed up the recognition process
|
|
|
|
|
indices = np.argsort(np.array(width_list))
|
|
|
|
|
rec_res = [["", 0.0]] * img_num
|
|
|
|
|
batch_num = self.rec_batch_num
|
|
|
|
|
st = time.time()
|
|
|
|
|
if self.benchmark:
|
|
|
|
|
self.autolog.times.start()
|
|
|
|
|
for beg_img_no in range(0, img_num, batch_num):
|
|
|
|
|
end_img_no = min(img_num, beg_img_no + batch_num)
|
|
|
|
|
norm_img_batch = []
|
|
|
|
|
imgC, imgH, imgW = self.rec_image_shape[:3]
|
|
|
|
|
max_wh_ratio = imgW / imgH
|
|
|
|
|
wh_ratio_list = []
|
|
|
|
|
for ino in range(beg_img_no, end_img_no):
|
|
|
|
|
h, w = img_list[indices[ino]].shape[0:2]
|
|
|
|
|
wh_ratio = w * 1.0 / h
|
|
|
|
|
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
|
|
|
|
wh_ratio_list.append(wh_ratio)
|
|
|
|
|
for ino in range(beg_img_no, end_img_no):
|
2025-02-28 19:56:49 +08:00
|
|
|
norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio)
|
2024-05-27 16:48:42 +00:00
|
|
|
norm_img = norm_img[np.newaxis, :]
|
|
|
|
|
norm_img_batch.append(norm_img)
|
|
|
|
|
norm_img_batch = np.concatenate(norm_img_batch)
|
|
|
|
|
norm_img_batch = norm_img_batch.copy()
|
|
|
|
|
if self.benchmark:
|
|
|
|
|
self.autolog.times.stamp()
|
|
|
|
|
|
|
|
|
|
assert self.use_onnx
|
|
|
|
|
input_dict = {}
|
|
|
|
|
input_dict[self.input_tensor.name] = norm_img_batch
|
|
|
|
|
outputs = self.predictor.run(self.output_tensors, input_dict)
|
|
|
|
|
preds = outputs[0]
|
|
|
|
|
rec_result = self.postprocess_op(
|
|
|
|
|
preds,
|
|
|
|
|
return_word_box=self.return_word_box,
|
|
|
|
|
wh_ratio_list=wh_ratio_list,
|
|
|
|
|
max_wh_ratio=max_wh_ratio,
|
|
|
|
|
)
|
|
|
|
|
for rno in range(len(rec_result)):
|
|
|
|
|
rec_res[indices[beg_img_no + rno]] = rec_result[rno]
|
|
|
|
|
if self.benchmark:
|
|
|
|
|
self.autolog.times.end(stamp=True)
|
|
|
|
|
return rec_res, time.time() - st
|