[refactor] Init
This commit is contained in:
121
texteller/utils/image.py
Normal file
121
texteller/utils/image.py
Normal file
@@ -0,0 +1,121 @@
|
||||
from collections import Counter
|
||||
from typing import List, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torchvision.transforms import v2
|
||||
|
||||
from texteller.constants import (
|
||||
FIXED_IMG_SIZE,
|
||||
IMG_CHANNELS,
|
||||
IMAGE_MEAN,
|
||||
IMAGE_STD,
|
||||
)
|
||||
from texteller.logger import get_logger
|
||||
|
||||
|
||||
_logger = get_logger()
|
||||
|
||||
|
||||
def readimgs(image_paths: list[str]) -> list[np.ndarray]:
|
||||
"""
|
||||
Read and preprocess a list of images from their file paths.
|
||||
|
||||
This function reads each image from the provided paths, handles different
|
||||
bit depths (converting 16-bit to 8-bit if necessary), and normalizes color
|
||||
channels to RGB format regardless of the original color space (BGR, BGRA,
|
||||
or grayscale).
|
||||
|
||||
Args:
|
||||
image_paths (list[str]): A list of file paths to the images to be read.
|
||||
|
||||
Returns:
|
||||
list[np.ndarray]: A list of NumPy arrays containing the preprocessed images
|
||||
in RGB format. Images that could not be read are skipped.
|
||||
"""
|
||||
processed_images = []
|
||||
for path in image_paths:
|
||||
image = cv2.imread(path, cv2.IMREAD_UNCHANGED)
|
||||
if image is None:
|
||||
raise ValueError(f"Image at {path} could not be read.")
|
||||
if image.dtype == np.uint16:
|
||||
_logger.warning(f'Converting {path} to 8-bit, image may be lossy.')
|
||||
image = cv2.convertScaleAbs(image, alpha=(255.0 / 65535.0))
|
||||
|
||||
channels = 1 if len(image.shape) == 2 else image.shape[2]
|
||||
if channels == 4:
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGB)
|
||||
elif channels == 1:
|
||||
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
||||
elif channels == 3:
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
processed_images.append(image)
|
||||
|
||||
return processed_images
|
||||
|
||||
|
||||
def trim_white_border(image: np.ndarray) -> np.ndarray:
|
||||
if len(image.shape) != 3 or image.shape[2] != 3:
|
||||
raise ValueError("Image is not in RGB format or channel is not in third dimension")
|
||||
|
||||
if image.dtype != np.uint8:
|
||||
raise ValueError(f"Image should stored in uint8")
|
||||
|
||||
corners = [tuple(image[0, 0]), tuple(image[0, -1]), tuple(image[-1, 0]), tuple(image[-1, -1])]
|
||||
bg_color = Counter(corners).most_common(1)[0][0]
|
||||
bg_color_np = np.array(bg_color, dtype=np.uint8)
|
||||
|
||||
h, w = image.shape[:2]
|
||||
bg = np.full((h, w, 3), bg_color_np, dtype=np.uint8)
|
||||
|
||||
diff = cv2.absdiff(image, bg)
|
||||
mask = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
threshold = 15
|
||||
_, diff = cv2.threshold(mask, threshold, 255, cv2.THRESH_BINARY)
|
||||
|
||||
x, y, w, h = cv2.boundingRect(diff)
|
||||
|
||||
trimmed_image = image[y : y + h, x : x + w]
|
||||
|
||||
return trimmed_image
|
||||
|
||||
|
||||
def padding(images: List[torch.Tensor], required_size: int) -> List[torch.Tensor]:
|
||||
images = [
|
||||
v2.functional.pad(
|
||||
img, padding=[0, 0, required_size - img.shape[2], required_size - img.shape[1]]
|
||||
)
|
||||
for img in images
|
||||
]
|
||||
return images
|
||||
|
||||
|
||||
def transform(images: List[Union[np.ndarray, Image.Image]]) -> List[torch.Tensor]:
|
||||
general_transform_pipeline = v2.Compose(
|
||||
[
|
||||
v2.ToImage(),
|
||||
v2.ToDtype(torch.uint8, scale=True),
|
||||
v2.Grayscale(),
|
||||
v2.Resize(
|
||||
size=FIXED_IMG_SIZE - 1,
|
||||
interpolation=v2.InterpolationMode.BICUBIC,
|
||||
max_size=FIXED_IMG_SIZE,
|
||||
antialias=True,
|
||||
),
|
||||
v2.ToDtype(torch.float32, scale=True), # Normalize expects float input
|
||||
v2.Normalize(mean=[IMAGE_MEAN], std=[IMAGE_STD]),
|
||||
]
|
||||
)
|
||||
|
||||
assert IMG_CHANNELS == 1, "Only support grayscale images for now"
|
||||
images = [
|
||||
np.array(img.convert('RGB')) if isinstance(img, Image.Image) else img for img in images
|
||||
]
|
||||
images = [trim_white_border(image) for image in images]
|
||||
images = [general_transform_pipeline(image) for image in images]
|
||||
images = padding(images, FIXED_IMG_SIZE)
|
||||
|
||||
return images
|
||||
Reference in New Issue
Block a user