Initial commit

This commit is contained in:
三洋三洋
2024-01-15 05:48:36 +00:00
commit 126026cb48
12 changed files with 428 additions and 0 deletions

BIN
.swp Normal file

Binary file not shown.

5
README.md Normal file
View File

@@ -0,0 +1,5 @@
# TexTeller
* python3.10
* 渲染出的图片大小为density 200

75
requirements.txt Normal file
View File

@@ -0,0 +1,75 @@
absl-py==2.0.0
accelerate==0.26.0
aiohttp==3.9.1
aiosignal==1.3.1
async-timeout==4.0.3
attrs==23.2.0
cachetools==5.3.2
certifi==2023.11.17
charset-normalizer==3.3.2
datasets==2.16.1
dill==0.3.7
filelock==3.13.1
frozenlist==1.4.1
fsspec==2023.10.0
google-auth==2.26.2
google-auth-oauthlib==1.2.0
grpcio==1.60.0
huggingface-hub==0.20.2
idna==3.6
Jinja2==3.1.2
Markdown==3.5.2
MarkupSafe==2.1.3
mpmath==1.3.0
multidict==6.0.4
multiprocess==0.70.15
networkx==3.2.1
numpy==1.26.3
nvidia-cublas-cu12==12.1.3.1
nvidia-cuda-cupti-cu12==12.1.105
nvidia-cuda-nvrtc-cu12==12.1.105
nvidia-cuda-runtime-cu12==12.1.105
nvidia-cudnn-cu12==8.9.2.26
nvidia-cufft-cu12==11.0.2.54
nvidia-curand-cu12==10.3.2.106
nvidia-cusolver-cu12==11.4.5.107
nvidia-cusparse-cu12==12.1.0.106
nvidia-nccl-cu12==2.18.1
nvidia-nvjitlink-cu12==12.3.101
nvidia-nvtx-cu12==12.1.105
oauthlib==3.2.2
packaging==23.2
pandas==2.1.4
pillow==10.2.0
protobuf==4.23.4
psutil==5.9.7
pyarrow==14.0.2
pyarrow-hotfix==0.6
pyasn1==0.5.1
pyasn1-modules==0.3.0
python-dateutil==2.8.2
pytz==2023.3.post1
PyYAML==6.0.1
regex==2023.12.25
requests==2.31.0
requests-oauthlib==1.3.1
rsa==4.9
safetensors==0.4.1
six==1.16.0
sympy==1.12
tensorboard==2.15.1
tensorboard-data-server==0.7.2
tensorboardX==2.6.2.2
tokenizers==0.15.0
torch==2.1.2
torchaudio==2.1.2
torchvision==0.16.2
tqdm==4.66.1
transformers==4.36.2
triton==2.1.0
typing_extensions==4.9.0
tzdata==2023.4
urllib3==2.1.0
Werkzeug==3.0.1
xxhash==3.4.1
yarl==1.9.4

7
run.sh Executable file
View File

@@ -0,0 +1,7 @@
#!/usr/bin/env bash
# 设置 CUDA 设备
export CUDA_VISIBLE_DEVICES=0,1,2,4
# 运行 Python 脚本并将输出重定向到日志文件
nohup python -m src.models.resizer.train.train > train_result_pred_height_v3.log 2>&1 &

33
src/globals.py Normal file
View File

@@ -0,0 +1,33 @@
# 公式图片(灰度化后)的均值和方差
IMAGE_MEAN = 0.9545467
IMAGE_STD = 0.15394445
# ========================= TeXify模型用的参数 ============================= #
# 输入图片的最大最小的宽和高
MIN_HEIGHT = 32
MAX_HEIGHT = 512
MIN_WIDTH = 32
MAX_WIDTH = 1280
# LaTex-OCR中分别是 32、192、32、672
# TeXify模型所用数据集中图片所用的Density渲染值
TEXIFY_INPUT_DENSITY = 80
# ============================================================================= #
# ========================= Resizer模型用的参数 ============================= #
# Resizer模型所用数据集中图片所用的Density渲染值
RESIZER_INPUT_DENSITY = 200
LABEL_RATIO = 1.0 * TEXIFY_INPUT_DENSITY / RESIZER_INPUT_DENSITY
NUM_CLASSES = 1 # 模型使用回归预测最后会接一个sigmoid预测01
NUM_CHANNELS = 1 # 输入单通道图片(灰度图)
# Resizer在训练时图片所固定的的大小
RESIZER_IMG_SIZE = 448
# ============================================================================= #

0
src/inference.py Normal file
View File

View File

@@ -0,0 +1,74 @@
#!/usr/bin/env python3
import os
import argparse
import torch
from pathlib import Path
from PIL import Image
from .model.Resizer import Resizer
from .utils import preprocess_fn
from munch import Munch
def load_resizer():
model = Resizer.from_pretrained('/home/lhy/code/TeXify/src/models/resizer/train/res_wo_sigmoid_train_result_v2/checkpoint-96000')
model.eval()
return model
def load_teller():
arguments = Munch(
{
'config': '/home/lhy/code/LaTeX-OCR/pix2tex/model/checkpoints/pix2tex/config.yaml',
'checkpoint': '/home/lhy/code/LaTeX-OCR/pix2tex/model/checkpoints/pix2tex_v1/pix2tex_v1_e30_step4265.pth',
'no_cuda': False,
'no_resize': False
}
)
...
def inference_v2(img: Image):
# img = img.convert('RGB') if img.format == 'PNG' else img
# processed_img = preprocess_fn({"pixel_values": [img]})
# resizer = load_resizer(resizer_path)
# inpu = torch.stack(processed_img['pixel_values'])
# pred_size = resizer(inpu)
# teller = load_teller(teller_path)
...
def inference(args):
img = Image.open(args.image)
img = img.convert('RGB') if img.format == 'PNG' else img
processed_img = preprocess_fn({"pixel_values": [img]})
ckt_path = Path(args.checkpoint).resolve()
model = Resizer.from_pretrained(ckt_path)
model.eval()
inpu = torch.stack(processed_img['pixel_values'])
pred = model(inpu)
print(pred)
...
if __name__ == "__main__":
cur_dirpath = os.getcwd()
script_dirpath = Path(__file__).resolve().parent
os.chdir(script_dirpath)
parser = argparse.ArgumentParser()
parser.add_argument('-img', '--image', type=str, required=True)
parser.add_argument('-ckt', '--checkpoint', type=str, required=True)
args = parser.parse_args([
'-img', '/home/lhy/code/TeXify/src/models/resizer/foo5_140h.jpg',
'-ckt', '/home/lhy/code/TeXify/src/models/resizer/train/train_result_pred_height_v5'
])
inference(args)
os.chdir(cur_dirpath)

View File

@@ -0,0 +1,5 @@
from transformers import ResNetForImageClassification
class Resizer(ResNetForImageClassification):
def __init__(self, config):
super().__init__(config)

View File

@@ -0,0 +1,122 @@
import os
import datasets
from pathlib import Path
from transformers import (
ResNetConfig,
TrainingArguments,
Trainer
)
from ..utils import preprocess_fn
from ..model.Resizer import Resizer
from ....globals import NUM_CHANNELS, NUM_CLASSES, RESIZER_IMG_SIZE
def train():
cur_dirpath = os.getcwd()
script_dirpath = Path(__file__).resolve().parent
os.chdir(script_dirpath)
data = datasets.load_dataset("./dataset").shuffle(seed=42)
data = data.rename_column("images", "pixel_values")
data.flatten_indices()
data = data.with_transform(preprocess_fn)
train_data, test_data = data['train'], data['test']
config = ResNetConfig(
num_channels=NUM_CHANNELS,
num_labels=NUM_CLASSES,
img_size=RESIZER_IMG_SIZE
)
model = Resizer(config)
model = Resizer.from_pretrained("/home/lhy/code/TeXify/src/models/resizer/train/train_result_pred_height_v4/checkpoint-213000")
training_args = TrainingArguments(
# resume_from_checkpoint="/home/lhy/code/TeXify/src/models/resizer/train/train_result_pred_height_v3/checkpoint-94500",
max_grad_norm=1.0,
# use_cpu=True,
seed=42, # 随机种子,用于确保实验的可重复性
# data_seed=42, # data sampler的采样也固定
# full_determinism=True, # 使整个训练完全固定这个设置会有害于模型训练只用于debug
output_dir='./train_result_pred_height_v5', # 输出目录
overwrite_output_dir=False, # 如果输出目录存在,不删除原先的内容
report_to=["tensorboard"], # 输出日志到TensorBoard
#+通过在命令行tensorboard --logdir ./logs 来查看日志
logging_dir=None, # TensorBoard日志文件的存储目录
log_level="info",
logging_strategy="steps", # 每隔一定步数记录一次日志
logging_steps=500, # 记录日志的步数间隔
logging_nan_inf_filter=False, # 对loss=nan或inf进行记录
num_train_epochs=50, # 总的训练轮数
# max_steps=3, # 训练的最大步骤数。如果设置了这个参数,
#+那么num_train_epochs将被忽略通常用于调试
# label_names = ['your_label_name'], # 指定data_loader中的标签名如果不指定则默认为'labels'
per_device_train_batch_size=55, # 每个GPU的batch size
per_device_eval_batch_size=48*2, # 每个GPU的evaluation batch size
auto_find_batch_size=False, # 自动搜索合适的batch size指数decay
optim = 'adamw_torch', # 还提供了很多AdamW的变体相较于经典的AdamW更加高效
#+当设置了optim后就不需要在Trainer中传入optimizer
lr_scheduler_type="cosine", # 设置lr_scheduler
warmup_ratio=0.1, # warmup占整个训练steps的比例
# warmup_steps=500, # 预热步数
weight_decay=0, # 权重衰减
learning_rate=5e-5, # 学习率
fp16=False, # 是否使用16位浮点数进行训练
gradient_accumulation_steps=1, # 梯度累积步数当batch size无法开很大时可以考虑这个参数来实现大batch size的效果
gradient_checkpointing=False, # 当为True时会在forward时适当丢弃一些中间量用于backward从而减轻显存压力但会增加forward的时间
label_smoothing_factor=0.0, # softlabel等于0时表示未开启
# debug='underflow_overflow', # 训练时检查溢出如果发生则会发出警告。该模式通常用于debug
torch_compile=True, # 是否使用torch.compile来编译模型从而获得更好的训练和推理性能
#+ 要求torch > 2.0,并且这个功能现在还不是很稳定
# deepspeed='your_json_path', # 使用deepspeed来训练需要指定ds_config.json的路径
#+ 在Trainer中使用Deepspeed时一定要注意ds_config.json中的配置是否与Trainer的一致如学习率batch size梯度累积步数等
#+ 如果不一致会出现很奇怪的bug而且一般还很难发现
dataloader_pin_memory=True, # 可以加快数据在cpu和gpu之间转移的速度
dataloader_num_workers=16, # 默认不会使用多进程来加载数据
dataloader_drop_last=True, # 丢掉最后一个minibatch
evaluation_strategy="steps", # 评估策略,可以是"steps"或"epoch"
eval_steps=500, # if evaluation_strategy="step"
# eval_steps=10, # if evaluation_strategy="step"
save_strategy="steps", # 保存checkpoint的策略
save_steps=1500, # 模型保存的步数间隔
save_total_limit=5, # 保存的模型的最大数量。如果超过这个数量,最旧的模型将被删除
load_best_model_at_end=True, # 训练结束时是否加载最佳模型
metric_for_best_model="eval_loss", # 用于选择最佳模型的指标
greater_is_better=False, # 指标值越小越好
do_train=True, # 是否进行训练,通常用于调试
do_eval=True, # 是否进行评估,通常用于调试
remove_unused_columns=True, # 是否删除没有用到的列特征默认为True
#+当删除了没用到的列后making it easier to unpack inputs into the models call function
push_to_hub=False, # 是否训练完后上传hub需要先在命令行huggingface-cli login进行登录认证的配置配置完后认证信息会存到cache文件夹里
hub_model_id="a_different_name", # 模型的名字
#+每次保存模型时都会上传到hub
#+训练完后记得trainer.push_to_hub()会将模型使用的参数以及验证集上的结果传到hub上
)
trainer = Trainer(
model,
training_args,
train_dataset=train_data,
eval_dataset=test_data,
)
trainer.train()
os.chdir(cur_dirpath)
if __name__ == '__main__':
train()

View File

@@ -0,0 +1 @@
from .preprocess import preprocess_fn

View File

@@ -0,0 +1,73 @@
import torch
from torchvision.transforms import v2
from PIL import Image, ImageChops
from ....globals import (
IMAGE_MEAN, IMAGE_STD,
LABEL_RATIO,
RESIZER_IMG_SIZE,
)
from typing import (
Any,
List,
Dict,
)
def trim_white_border(image: Image):
if image.mode == 'RGB':
bg_color = (255, 255, 255)
elif image.mode == 'RGBA':
bg_color = (255, 255, 255, 255)
elif image.mode == 'L':
bg_color = 255
else:
raise ValueError("Unsupported image mode")
bg = Image.new(image.mode, image.size, bg_color)
diff = ImageChops.difference(image, bg)
diff = ImageChops.add(diff, diff, 2.0, -100)
bbox = diff.getbbox()
if bbox:
return image.crop(bbox)
def preprocess_fn(samples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
imgs = samples['pixel_values']
imgs = [trim_white_border(img) for img in imgs]
labels = [float(img.height * LABEL_RATIO) for img in imgs]
transform = v2.Compose([
v2.ToImage(),
v2.ToDtype(torch.uint8, scale=True),
v2.Grayscale(),
v2.Resize(
size=RESIZER_IMG_SIZE - 1, # size必须小于max_size
interpolation=v2.InterpolationMode.BICUBIC,
max_size=RESIZER_IMG_SIZE,
antialias=True
),
v2.ToDtype(torch.float32, scale=True),
v2.Normalize(mean=[IMAGE_MEAN], std=[IMAGE_STD]),
])
imgs = transform(imgs)
imgs = [
v2.functional.pad(
img,
padding=[0, 0, RESIZER_IMG_SIZE - img.shape[2], RESIZER_IMG_SIZE - img.shape[1]]
)
for img in imgs
]
res = {'pixel_values': imgs, 'labels': labels}
return res
if __name__ == "__main__": # unit test
import datasets
data = datasets.load_dataset("/home/lhy/code/TeXify/src/models/resizer/train/dataset/dataset.py").shuffle(seed=42)
data = data.with_transform(preprocess_fn)
train_data, test_data = data['train'], data['test']
inpu = train_data[:10]
pause = 1

33
src/web.py Normal file
View File

@@ -0,0 +1,33 @@
import streamlit as st
import time
from stqdm import stqdm
# 使用 Markdown 和 HTML 将标题居中
with st.columns(3)[1]:
st.title(":rainbow[TexTeller] :sparkles:")
if "start" not in st.session_state:
st.balloons()
st.session_state["start"] = 1
uploaded_file = st.file_uploader("",type=['jpg', 'png'])
st.divider()
if uploaded_file:
st.image(uploaded_file, caption="Input image")
for _ in stqdm(range(10), st_container=st.sidebar):
time.sleep(0.1)
with st.spinner('Wait for it...'):
time.sleep(5)
st.success('Done!')
with st.empty():
for seconds in range(60):
st.write(f"{seconds} seconds have passed")
time.sleep(1)
st.write("✔️ 1 minute over!")