1) 加入了推理代码; 2) 整理了其他代码

This commit is contained in:
三洋三洋
2024-01-28 14:03:42 +00:00
parent c6d5c91955
commit 14125da26f
4 changed files with 52 additions and 18 deletions

View File

@@ -1,9 +1,8 @@
import torch
import torchvision
from torchvision.transforms import v2
from PIL import ImageChops, Image
from typing import Any, Dict, List
from typing import List
from ....globals import OCR_IMG_CHANNELS, OCR_IMG_SIZE, OCR_FIX_SIZE, IMAGE_MEAN, IMAGE_STD
@@ -11,12 +10,10 @@ from ....globals import OCR_IMG_CHANNELS, OCR_IMG_SIZE, OCR_FIX_SIZE, IMAGE_MEAN
def trim_white_border(image: Image.Image):
if image.mode == 'RGB':
bg_color = (255, 255, 255)
elif image.mode == 'RGBA':
bg_color = (255, 255, 255, 255)
elif image.mode == 'L':
bg_color = 255
else:
raise ValueError("Unsupported image mode")
raise ValueError("Only support RGB or L mode")
# 创建一个与图片一样大小的白色背景
bg = Image.new(image.mode, image.size, bg_color)
# 计算原图像与背景图像的差异。如果原图像在边框区域与左上角像素颜色相同,那么这些区域在差异图像中将是黑色的。
@@ -25,8 +22,7 @@ def trim_white_border(image: Image.Image):
diff = ImageChops.add(diff, diff, 2.0, -100)
# 找到差异图像中非黑色区域的边界框。如果找到,原图将根据这个边界框被裁剪。
bbox = diff.getbbox()
if bbox:
return image.crop(bbox)
return image.crop(bbox) if bbox else image
def train_transform(images: List[Image.Image]) -> List[torch.Tensor]: