修改好了训练,加入了数据增强

This commit is contained in:
三洋三洋
2024-03-04 05:35:59 +00:00
parent 38877d90b8
commit 2d6c46b88d
2 changed files with 33 additions and 17 deletions

View File

@@ -21,7 +21,7 @@ def left_move(x: torch.Tensor, pad_val):
def tokenize_fn(samples: Dict[str, List[Any]], tokenizer=None) -> Dict[str, List[Any]]:
assert tokenizer is not None, 'tokenizer should not be None'
tokenized_formula = tokenizer(samples['latex_formula'], return_special_tokens_mask=True)
tokenized_formula['pixel_values'] = [np.array(sample) for sample in samples['image']]
tokenized_formula['pixel_values'] = samples['image']
return tokenized_formula

View File

@@ -5,6 +5,7 @@ import cv2
from torchvision.transforms import v2
from typing import List, Union
from augraphy import *
from PIL import Image
from ...globals import (
@@ -15,12 +16,13 @@ from ...globals import (
MAX_RESIZE_RATIO, MIN_RESIZE_RATIO
)
train_pipeline = default_augraphy_pipeline()
general_transform_pipeline = v2.Compose([
v2.ToImage(), # Convert to tensor, only needed if you had a PIL image
#+返回一个List of torchvision.Imagelist的长度就是batch_size
#+因此在整个Compose pipeline的最后输出的也是一个List of torchvision.Image
#+注意不是返回一整个torchvision.Imagebatch_size的维度是拿出来的
#+返回一个List of torchvision.Imagelist的长度就是batch_size
#+因此在整个Compose pipeline的最后输出的也是一个List of torchvision.Image
#+注意不是返回一整个torchvision.Imagebatch_size的维度是拿出来的
v2.ToDtype(torch.uint8, scale=True), # optional, most input are already uint8 at this point
v2.Grayscale(), # 转灰度图(视具体任务而定)
@@ -74,7 +76,15 @@ def trim_white_border(image: np.ndarray):
return trimmed_image
def padding(images: List[torch.Tensor], required_size: int):
def add_white_border(image: np.ndarray, max_size: int) -> np.ndarray:
randi = [random.randint(0, max_size) for _ in range(4)]
return v2.functional.pad(
image,
padding=randi
)
def padding(images: List[torch.Tensor], required_size: int) -> List[torch.Tensor]:
images = [
v2.functional.pad(
img,
@@ -107,9 +117,19 @@ def random_resize(
]
def general_transform(images: List[np.ndarray]) -> List[torch.Tensor]:
def train_transform(images: List[Image.Image]) -> List[torch.Tensor]:
assert OCR_IMG_CHANNELS == 1 , "Only support grayscale images for now"
assert OCR_FIX_SIZE == True, "Only support fixed size images for now"
images = [np.array(img.convert('RGB')) for img in images]
# random resize first
images = random_resize(images, MIN_RESIZE_RATIO, MAX_RESIZE_RATIO)
# 裁剪掉白边
images = [trim_white_border(image) for image in images]
# 增加白边
images = [add_white_border(image, max_size=35) for image in images]
# 数据增强
images = [train_pipeline(image) for image in images]
# general transform pipeline
images = general_transform_pipeline(images) # imgs: List[PIL.Image.Image]
# padding to fixed size
@@ -117,21 +137,17 @@ def general_transform(images: List[np.ndarray]) -> List[torch.Tensor]:
return images
def train_transform(images: List[Image.Image]) -> List[torch.Tensor]:
assert OCR_IMG_CHANNELS == 1 , "Only support grayscale images for now"
assert OCR_FIX_SIZE == True, "Only support fixed size images for now"
# random resize first
images = [np.array(img.convert('RGB')) for img in images]
images = random_resize(images, MIN_RESIZE_RATIO, MAX_RESIZE_RATIO)
return general_transform(images)
def inference_transform(images: List[np.ndarray]) -> List[torch.Tensor]:
assert OCR_IMG_CHANNELS == 1 , "Only support grayscale images for now"
assert OCR_FIX_SIZE == True, "Only support fixed size images for now"
# 裁剪掉白边
images = [trim_white_border(image) for image in images]
# general transform pipeline
images = general_transform_pipeline(images) # imgs: List[PIL.Image.Image]
# padding to fixed size
images = padding(images, OCR_IMG_SIZE)
return general_transform(images)
return images
if __name__ == '__main__':