[chore] exclude paddleocr directory from pre-commit hooks

This commit is contained in:
三洋三洋
2025-02-28 19:56:49 +08:00
parent a8a005ae10
commit 3d546f9993
130 changed files with 592 additions and 739 deletions

View File

@@ -0,0 +1,60 @@
import torch
from transformers import DataCollatorForLanguageModeling
from typing import List, Dict, Any
from .transforms import train_transform, inference_transform
from ...globals import MIN_HEIGHT, MIN_WIDTH, MAX_TOKEN_SIZE
def left_move(x: torch.Tensor, pad_val):
assert len(x.shape) == 2, 'x should be 2-dimensional'
lefted_x = torch.ones_like(x)
lefted_x[:, :-1] = x[:, 1:]
lefted_x[:, -1] = pad_val
return lefted_x
def tokenize_fn(samples: Dict[str, List[Any]], tokenizer=None) -> Dict[str, List[Any]]:
assert tokenizer is not None, 'tokenizer should not be None'
tokenized_formula = tokenizer(samples['latex_formula'], return_special_tokens_mask=True)
tokenized_formula['pixel_values'] = samples['image']
return tokenized_formula
def collate_fn(samples: List[Dict[str, Any]], tokenizer=None) -> Dict[str, List[Any]]:
assert tokenizer is not None, 'tokenizer should not be None'
pixel_values = [dic.pop('pixel_values') for dic in samples]
clm_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
batch = clm_collator(samples)
batch['pixel_values'] = pixel_values
batch['decoder_input_ids'] = batch.pop('input_ids')
batch['decoder_attention_mask'] = batch.pop('attention_mask')
# 左移labels和decoder_attention_mask
batch['labels'] = left_move(batch['labels'], -100)
# 把list of Image转成一个tensor with (B, C, H, W)
batch['pixel_values'] = torch.stack(batch['pixel_values'], dim=0)
return batch
def img_train_transform(samples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
processed_img = train_transform(samples['pixel_values'])
samples['pixel_values'] = processed_img
return samples
def img_inf_transform(samples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
processed_img = inference_transform(samples['pixel_values'])
samples['pixel_values'] = processed_img
return samples
def filter_fn(sample, tokenizer=None) -> bool:
return (
sample['image'].height > MIN_HEIGHT
and sample['image'].width > MIN_WIDTH
and len(tokenizer(sample['latex_formula'])['input_ids']) < MAX_TOKEN_SIZE - 10
)