[chore] Update
This commit is contained in:
28
README.md
28
README.md
@@ -56,37 +56,43 @@ TexTeller was trained with **80M image-formula pairs** (previous dataset can be
|
|||||||
</tr>
|
</tr>
|
||||||
</table>
|
</table>
|
||||||
|
|
||||||
## 🔄 Change Log
|
## 📮 Change Log
|
||||||
|
|
||||||
- 📮[2024-06-06] **TexTeller3.0 released!** The training data has been increased to **80M** (**10x more than** TexTeller2.0 and also improved in data diversity). TexTeller3.0's new features:
|
- [2024-06-06] **TexTeller3.0 released!** The training data has been increased to **80M** (**10x more than** TexTeller2.0 and also improved in data diversity). TexTeller3.0's new features:
|
||||||
|
|
||||||
- Support scanned image, handwritten formulas, English(Chinese) mixed formulas.
|
- Support scanned image, handwritten formulas, English(Chinese) mixed formulas.
|
||||||
|
|
||||||
- OCR abilities in both Chinese and English for printed images.
|
- OCR abilities in both Chinese and English for printed images.
|
||||||
|
|
||||||
- 📮[2024-05-02] Support **paragraph recognition**.
|
- [2024-05-02] Support **paragraph recognition**.
|
||||||
|
|
||||||
- 📮[2024-04-12] **Formula detection model** released!
|
- [2024-04-12] **Formula detection model** released!
|
||||||
|
|
||||||
- 📮[2024-03-25] TexTeller2.0 released! The training data for TexTeller2.0 has been increased to 7.5M (15x more than TexTeller1.0 and also improved in data quality). The trained TexTeller2.0 demonstrated **superior performance** in the test set, especially in recognizing rare symbols, complex multi-line formulas, and matrices.
|
- [2024-03-25] TexTeller2.0 released! The training data for TexTeller2.0 has been increased to 7.5M (15x more than TexTeller1.0 and also improved in data quality). The trained TexTeller2.0 demonstrated **superior performance** in the test set, especially in recognizing rare symbols, complex multi-line formulas, and matrices.
|
||||||
|
|
||||||
> [Here](./assets/test.pdf) are more test images and a horizontal comparison of various recognition models.
|
> [Here](./assets/test.pdf) are more test images and a horizontal comparison of various recognition models.
|
||||||
|
|
||||||
## 🚀 Getting Started
|
## 🚀 Getting Started
|
||||||
|
|
||||||
1. Install the project's dependencies:
|
1. Install uv:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install texteller
|
pip install uv
|
||||||
```
|
```
|
||||||
|
|
||||||
2. If your are using CUDA backend, you may need to install `onnxruntime-gpu`:
|
2. Install the project's dependencies:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install texteller[onnxruntime-gpu]
|
uv pip install texteller
|
||||||
```
|
```
|
||||||
|
|
||||||
3. Run the following command to start inference:
|
3. If your are using CUDA backend, you may need to install `onnxruntime-gpu`:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
uv pip install texteller[onnxruntime-gpu]
|
||||||
|
```
|
||||||
|
|
||||||
|
4. Run the following command to start inference:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
texteller inference "/path/to/image.{jpg,png}"
|
texteller inference "/path/to/image.{jpg,png}"
|
||||||
@@ -164,7 +170,7 @@ Please setup your environment before training:
|
|||||||
1. Install the dependencies for training:
|
1. Install the dependencies for training:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install texteller[train]
|
uv pip install texteller[train]
|
||||||
```
|
```
|
||||||
|
|
||||||
2. Clone the repository:
|
2. Clone the repository:
|
||||||
|
|||||||
@@ -74,19 +74,25 @@ TexTeller 使用 **8千万图像-公式对** 进行训练(前代数据集可
|
|||||||
|
|
||||||
## 🚀 快速开始
|
## 🚀 快速开始
|
||||||
|
|
||||||
1. 安装项目依赖:
|
1. 安装uv:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install texteller
|
pip install uv
|
||||||
```
|
```
|
||||||
|
|
||||||
2. 若使用 CUDA 后端,可能需要安装 `onnxruntime-gpu`:
|
2. 安装项目依赖:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install texteller[onnxruntime-gpu]
|
uv pip install texteller
|
||||||
```
|
```
|
||||||
|
|
||||||
3. 运行以下命令开始推理:
|
3. 若使用 CUDA 后端,可能需要安装 `onnxruntime-gpu`:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
uv pip install texteller[onnxruntime-gpu]
|
||||||
|
```
|
||||||
|
|
||||||
|
4. 运行以下命令开始推理:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
texteller inference "/path/to/image.{jpg,png}"
|
texteller inference "/path/to/image.{jpg,png}"
|
||||||
@@ -96,7 +102,7 @@ TexTeller 使用 **8千万图像-公式对** 进行训练(前代数据集可
|
|||||||
|
|
||||||
## 🌐 网页演示
|
## 🌐 网页演示
|
||||||
|
|
||||||
运行命令:
|
命令行运行:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
texteller web
|
texteller web
|
||||||
@@ -164,7 +170,7 @@ TexTeller的公式检测模型在3415张中文资料图像和8272张[IBEM数据
|
|||||||
1. 安装训练依赖:
|
1. 安装训练依赖:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install texteller[train]
|
uv pip install texteller[train]
|
||||||
```
|
```
|
||||||
|
|
||||||
2. 克隆仓库:
|
2. 克隆仓库:
|
||||||
|
|||||||
Reference in New Issue
Block a user