[chore] Update README.md
This commit is contained in:
213
README.md
213
README.md
@@ -2,51 +2,27 @@
|
||||
|
||||
<div align="center">
|
||||
<h1>
|
||||
<img src="./assets/fire.svg" width=30, height=30>
|
||||
<img src="./assets/fire.svg" width=30, height=30>
|
||||
𝚃𝚎𝚡𝚃𝚎𝚕𝚕𝚎𝚛
|
||||
<img src="./assets/fire.svg" width=30, height=30>
|
||||
</h1>
|
||||
<!-- <p align="center">
|
||||
🤗 <a href="https://huggingface.co/OleehyO/TexTeller"> Hugging Face </a>
|
||||
</p> -->
|
||||
|
||||
[](https://opensource.org/licenses/Apache-2.0)
|
||||
[](https://oleehyo.github.io/TexTeller/)
|
||||
[](https://hub.docker.com/r/oleehyo/texteller)
|
||||
[](https://huggingface.co/datasets/OleehyO/latex-formulas)
|
||||
[](https://huggingface.co/OleehyO/TexTeller)
|
||||
[](https://opensource.org/licenses/Apache-2.0)
|
||||
|
||||
</div>
|
||||
|
||||
<!-- <p align="center">
|
||||
|
||||
<a href="https://opensource.org/licenses/Apache-2.0">
|
||||
<img src="https://img.shields.io/badge/License-Apache_2.0-blue.svg" alt="License">
|
||||
</a>
|
||||
<a href="https://github.com/OleehyO/TexTeller/issues">
|
||||
<img src="https://img.shields.io/badge/Maintained%3F-yes-green.svg" alt="Maintenance">
|
||||
</a>
|
||||
<a href="https://github.com/OleehyO/TexTeller/pulls">
|
||||
<img src="https://img.shields.io/badge/Contributions-welcome-brightgreen.svg?style=flat" alt="Contributions welcome">
|
||||
</a>
|
||||
<a href="https://huggingface.co/datasets/OleehyO/latex-formulas">
|
||||
<img src="https://img.shields.io/badge/Data-Texteller1.0-brightgreen.svg" alt="Data">
|
||||
</a>
|
||||
<a href="https://huggingface.co/OleehyO/TexTeller">
|
||||
<img src="https://img.shields.io/badge/Weights-Texteller3.0-yellow.svg" alt="Weights">
|
||||
</a>
|
||||
|
||||
</p> -->
|
||||
|
||||
https://github.com/OleehyO/TexTeller/assets/56267907/532d1471-a72e-4960-9677-ec6c19db289f
|
||||
|
||||
TexTeller is an end-to-end formula recognition model based on [TrOCR](https://arxiv.org/abs/2109.10282), capable of converting images into corresponding LaTeX formulas.
|
||||
TexTeller is an end-to-end formula recognition model, capable of converting images into corresponding LaTeX formulas.
|
||||
|
||||
TexTeller was trained with **80M image-formula pairs** (previous dataset can be obtained [here](https://huggingface.co/datasets/OleehyO/latex-formulas)), compared to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) which used a 100K dataset, TexTeller has **stronger generalization abilities** and **higher accuracy**, covering most use cases.
|
||||
|
||||
>[!NOTE]
|
||||
> If you would like to provide feedback or suggestions for this project, feel free to start a discussion in the [Discussions section](https://github.com/OleehyO/TexTeller/discussions).
|
||||
>
|
||||
> Additionally, if you find this project helpful, please don't forget to give it a star⭐️🙏️
|
||||
|
||||
---
|
||||
|
||||
@@ -55,15 +31,12 @@ TexTeller was trained with **80M image-formula pairs** (previous dataset can be
|
||||
<td>
|
||||
|
||||
## 🔖 Table of Contents
|
||||
- [Change Log](#-change-log)
|
||||
- [Getting Started](#-getting-started)
|
||||
- [Web Demo](#-web-demo)
|
||||
- [Server](#-server)
|
||||
- [Python API](#-python-api)
|
||||
- [Formula Detection](#-formula-detection)
|
||||
- [API Usage](#-api-usage)
|
||||
- [Training](#️️-training)
|
||||
- [Plans](#-plans)
|
||||
- [Stargazers over time](#️-stargazers-over-time)
|
||||
- [Contributors](#-contributors)
|
||||
|
||||
</td>
|
||||
<td>
|
||||
@@ -76,18 +49,9 @@ TexTeller was trained with **80M image-formula pairs** (previous dataset can be
|
||||
</figcaption>
|
||||
</figure>
|
||||
<div>
|
||||
<p>
|
||||
Thanks to the
|
||||
<i>
|
||||
Super Computing Platform of Beijing University of Posts and Telecommunications
|
||||
</i>
|
||||
for supporting this work😘
|
||||
</p>
|
||||
<!-- <img src="assets/scss.png" width="200"> -->
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
@@ -110,153 +74,118 @@ TexTeller was trained with **80M image-formula pairs** (previous dataset can be
|
||||
|
||||
## 🚀 Getting Started
|
||||
|
||||
1. Clone the repository:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/OleehyO/TexTeller
|
||||
```
|
||||
|
||||
2. Install the project's dependencies:
|
||||
1. Install the project's dependencies:
|
||||
|
||||
```bash
|
||||
pip install texteller
|
||||
```
|
||||
|
||||
3. Enter the `src/` directory and run the following command in the terminal to start inference:
|
||||
2. If your are using CUDA backend, you may need to install `onnxruntime-gpu`:
|
||||
|
||||
```bash
|
||||
python inference.py -img "/path/to/image.{jpg,png}"
|
||||
# use --inference-mode option to enable GPU(cuda or mps) inference
|
||||
#+e.g. python inference.py -img "img.jpg" --inference-mode cuda
|
||||
pip install texteller[onnxruntime-gpu]
|
||||
```
|
||||
|
||||
> The first time you run it, the required checkpoints will be downloaded from Hugging Face.
|
||||
|
||||
### Paragraph Recognition
|
||||
|
||||
As demonstrated in the video, TexTeller is also capable of recognizing entire text paragraphs. Although TexTeller has general text OCR capabilities, we still recommend using paragraph recognition for better results:
|
||||
|
||||
1. [Download the weights](https://huggingface.co/TonyLee1256/texteller_det/resolve/main/rtdetr_r50vd_6x_coco.onnx?download=true) of the formula detection model to the`src/models/det_model/model/`directory
|
||||
|
||||
2. Run `inference.py` in the `src/` directory and add the `-mix` option, the results will be output in markdown format.
|
||||
3. Run the following command to start inference:
|
||||
|
||||
```bash
|
||||
python inference.py -img "/path/to/image.{jpg,png}" -mix
|
||||
texteller inference "/path/to/image.{jpg,png}"
|
||||
```
|
||||
|
||||
TexTeller uses the lightweight [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) model by default for recognizing both Chinese and English text. You can try using a larger model to achieve better recognition results for both Chinese and English:
|
||||
|
||||
| Checkpoints | Model Description | Size |
|
||||
|-------------|-------------------| ---- |
|
||||
| [ch_PP-OCRv4_det.onnx](https://huggingface.co/OleehyO/paddleocrv4.onnx/resolve/main/ch_PP-OCRv4_det.onnx?download=true) | **Default detection model**, supports Chinese-English text detection | 4.70M |
|
||||
| [ch_PP-OCRv4_server_det.onnx](https://huggingface.co/OleehyO/paddleocrv4.onnx/resolve/main/ch_PP-OCRv4_server_det.onnx?download=true) | High accuracy model, supports Chinese-English text detection | 115M |
|
||||
| [ch_PP-OCRv4_rec.onnx](https://huggingface.co/OleehyO/paddleocrv4.onnx/resolve/main/ch_PP-OCRv4_rec.onnx?download=true) | **Default recoginition model**, supports Chinese-English text recognition | 10.80M |
|
||||
| [ch_PP-OCRv4_server_rec.onnx](https://huggingface.co/OleehyO/paddleocrv4.onnx/resolve/main/ch_PP-OCRv4_server_rec.onnx?download=true) | High accuracy model, supports Chinese-English text recognition | 90.60M |
|
||||
|
||||
Place the weights of the recognition/detection model in the `det/` or `rec/` directories within `src/models/third_party/paddleocr/checkpoints/`, and rename them to `default_model.onnx`.
|
||||
|
||||
> [!NOTE]
|
||||
> Paragraph recognition cannot restore the structure of a document, it can only recognize its content.
|
||||
> See `texteller inference --help` for more details
|
||||
|
||||
## 🌐 Web Demo
|
||||
|
||||
Go to the `src/` directory and run the following command:
|
||||
Run the following command:
|
||||
|
||||
```bash
|
||||
./start_web.sh
|
||||
texteller web
|
||||
```
|
||||
|
||||
Enter `http://localhost:8501` in a browser to view the web demo.
|
||||
|
||||
> [!NOTE]
|
||||
> 1. For Windows users, please run the `start_web.bat` file.
|
||||
> 2. When using onnxruntime + GPU for inference, you need to install onnxruntime-gpu.
|
||||
> Paragraph recognition cannot restore the structure of a document, it can only recognize its content.
|
||||
|
||||
## 🔍 Formula Detection
|
||||
## 🖥️ Server
|
||||
|
||||
TexTeller’s formula detection model is trained on 3,415 images of Chinese educational materials (with over 130 layouts) and 8,272 images from the [IBEM dataset](https://zenodo.org/records/4757865), and it supports formula detection across entire images.
|
||||
|
||||
<div align="center">
|
||||
<img src="./assets/det_rec.png" width=250>
|
||||
</div>
|
||||
|
||||
1. Download the model weights and place them in `src/models/det_model/model/` [[link](https://huggingface.co/TonyLee1256/texteller_det/resolve/main/rtdetr_r50vd_6x_coco.onnx?download=true)].
|
||||
|
||||
2. Run the following command in the `src/` directory, and the results will be saved in `src/subimages/`
|
||||
|
||||
<details>
|
||||
<summary>Advanced: batch formula recognition</summary>
|
||||
|
||||
After **formula detection**, run the following command in the `src/` directory:
|
||||
|
||||
```shell
|
||||
python rec_infer_from_crop_imgs.py
|
||||
```
|
||||
|
||||
This will use the results of the previous formula detection to perform batch recognition on all cropped formulas, saving the recognition results as txt files in `src/results/`.
|
||||
|
||||
</details>
|
||||
|
||||
## 📡 API Usage
|
||||
|
||||
We use [ray serve](https://github.com/ray-project/ray) to provide an API interface for TexTeller, allowing you to integrate TexTeller into your own projects. To start the server, you first need to enter the `src/` directory and then run the following command:
|
||||
We use [ray serve](https://github.com/ray-project/ray) to provide an API server for TexTeller. To start the server, run the following command:
|
||||
|
||||
```bash
|
||||
python server.py
|
||||
texteller launch
|
||||
```
|
||||
|
||||
| Parameter | Description |
|
||||
| --------- | -------- |
|
||||
| `-ckpt` | The path to the weights file,*default is TexTeller's pretrained weights*. |
|
||||
| `-tknz` | The path to the tokenizer,*default is TexTeller's tokenizer*. |
|
||||
| `-port` | The server's service port,*default is 8000*. |
|
||||
| `--inference-mode` | Whether to use "cuda" or "mps" for inference,*default is "cpu"*. |
|
||||
| `--num_beams` | The number of beams for beam search,*default is 1*. |
|
||||
| `--num_replicas` | The number of service replicas to run on the server,*default is 1 replica*. You can use more replicas to achieve greater throughput.|
|
||||
| `--ncpu_per_replica` | The number of CPU cores used per service replica,*default is 1*.|
|
||||
| `--ngpu_per_replica` | The number of GPUs used per service replica,*default is 1*. You can set this value between 0 and 1 to run multiple service replicas on one GPU to share the GPU, thereby improving GPU utilization. (Note, if --num_replicas is 2, --ngpu_per_replica is 0.7, then 2 GPUs must be available) |
|
||||
| `-onnx` | Perform inference using Onnx Runtime, *disabled by default* |
|
||||
| `-p` | The server's service port,*default is 8000*. |
|
||||
| `--num-replicas` | The number of service replicas to run on the server,*default is 1 replica*. You can use more replicas to achieve greater throughput.|
|
||||
| `--ncpu-per-replica` | The number of CPU cores used per service replica,*default is 1*.|
|
||||
| `--ngpu-per-replica` | The number of GPUs used per service replica,*default is 1*. You can set this value between 0 and 1 to run multiple service replicas on one GPU to share the GPU, thereby improving GPU utilization. (Note, if --num_replicas is 2, --ngpu_per_replica is 0.7, then 2 GPUs must be available) |
|
||||
| `--num-beams` | The number of beams for beam search,*default is 1*. |
|
||||
| `--use-onnx` | Perform inference using Onnx Runtime, *disabled by default* |
|
||||
|
||||
> [!NOTE]
|
||||
> A client demo can be found at `src/client/demo.py`, you can refer to `demo.py` to send requests to the server
|
||||
To send requests to the server:
|
||||
|
||||
```python
|
||||
# client_demo.py
|
||||
|
||||
import requests
|
||||
|
||||
server_url = "http://127.0.0.1:8000/predict"
|
||||
|
||||
img_path = "/path/to/your/image"
|
||||
with open(img_path, 'rb') as img:
|
||||
files = {'img': img}
|
||||
response = requests.post(server_url, files=files)
|
||||
|
||||
print(response.text)
|
||||
```
|
||||
|
||||
## 🐍 Python API
|
||||
|
||||
We provide several easy-to-use Python APIs for formula OCR scenarios. Please refer to our [documentation](https://oleehyo.github.io/TexTeller/) to learn about the corresponding API interfaces and usage.
|
||||
|
||||
## 🔍 Formula Detection
|
||||
|
||||
TexTeller's formula detection model is trained on 3,415 images of Chinese materials and 8,272 images from the [IBEM dataset](https://zenodo.org/records/4757865).
|
||||
|
||||
<div align="center">
|
||||
<img src="./assets/det_rec.png" width=250>
|
||||
</div>
|
||||
|
||||
We provide a formula detection interface in the Python API. Please refer to our [API documentation](https://oleehyo.github.io/TexTeller/) for more details.
|
||||
|
||||
## 🏋️♂️ Training
|
||||
|
||||
### Dataset
|
||||
Please setup your environment before training:
|
||||
|
||||
We provide an example dataset in the `src/models/ocr_model/train/dataset/` directory, you can place your own images in the `images/` directory and annotate each image with its corresponding formula in `formulas.jsonl`.
|
||||
|
||||
After preparing your dataset, you need to **change the `DIR_URL` variable to your own dataset's path** in `**/train/dataset/loader.py`
|
||||
|
||||
### Retraining the Tokenizer
|
||||
|
||||
If you are using a different dataset, you might need to retrain the tokenizer to obtain a different vocabulary. After configuring your dataset, you can train your own tokenizer with the following command:
|
||||
|
||||
1. In `src/models/tokenizer/train.py`, change `new_tokenizer.save_pretrained('./your_dir_name')` to your custom output directory
|
||||
|
||||
> If you want to use a different vocabulary size (default 15K), you need to change the `VOCAB_SIZE` variable in `src/models/globals.py`
|
||||
>
|
||||
2. **In the `src/` directory**, run the following command:
|
||||
1. Install the dependencies for training:
|
||||
|
||||
```bash
|
||||
python -m models.tokenizer.train
|
||||
pip install texteller[train]
|
||||
```
|
||||
|
||||
2. Clone the repository:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/OleehyO/TexTeller.git
|
||||
```
|
||||
|
||||
### Dataset
|
||||
|
||||
We provide an example dataset in the `examples/train_texteller/dataset/train` directory, you can place your own training data according to the format of the example dataset.
|
||||
|
||||
### Training the Model
|
||||
|
||||
1. Modify `num_processes` in `src/train_config.yaml` to match the number of GPUs available for training (default is 1).
|
||||
2. In the `src/` directory, run the following command:
|
||||
In the `examples/train_texteller/` directory, run the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch --config_file ./train_config.yaml -m models.ocr_model.train.train
|
||||
accelerate launch train.py
|
||||
```
|
||||
|
||||
You can set your own tokenizer and checkpoint paths in `src/models/ocr_model/train/train.py` (refer to `train.py` for more information). If you are using the same architecture and vocabulary as TexTeller, you can also fine-tune TexTeller's default weights with your own dataset.
|
||||
|
||||
In `src/globals.py` and `src/models/ocr_model/train/train_args.py`, you can change the model's architecture and training hyperparameters.
|
||||
|
||||
> [!NOTE]
|
||||
> Our training scripts use the [Hugging Face Transformers](https://github.com/huggingface/transformers) library, so you can refer to their [documentation](https://huggingface.co/docs/transformers/v4.32.1/main_classes/trainer#transformers.TrainingArguments) for more details and configurations on training parameters.
|
||||
Training arguments can be adjusted in [`train_config.yaml`](./examples/train_texteller/train_config.yaml).
|
||||
|
||||
## 📅 Plans
|
||||
|
||||
@@ -266,13 +195,11 @@ In `src/globals.py` and `src/models/ocr_model/train/train_args.py`, you can chan
|
||||
- [X] ~~Handwritten formulas support~~
|
||||
- [ ] PDF document recognition
|
||||
- [ ] Inference acceleration
|
||||
- [ ] ...
|
||||
|
||||
## ⭐️ Stargazers over time
|
||||
|
||||
[](https://starchart.cc/OleehyO/TexTeller)
|
||||
|
||||
|
||||
## 👥 Contributors
|
||||
|
||||
<a href="https://github.com/OleehyO/TexTeller/graphs/contributors">
|
||||
|
||||
Reference in New Issue
Block a user