[chore] exclude paddleocr directory from pre-commit hooks

This commit is contained in:
三洋三洋
2025-02-28 19:56:49 +08:00
parent 3296077461
commit 4d3714bb4b
130 changed files with 592 additions and 739 deletions

View File

@@ -0,0 +1,226 @@
import os
import time
import yaml
import numpy as np
import cv2
from tqdm import tqdm
from typing import List
from .preprocess import Compose
from .Bbox import Bbox
# Global dictionary
SUPPORT_MODELS = {
'YOLO',
'PPYOLOE',
'RCNN',
'SSD',
'Face',
'FCOS',
'SOLOv2',
'TTFNet',
'S2ANet',
'JDE',
'FairMOT',
'DeepSORT',
'GFL',
'PicoDet',
'CenterNet',
'TOOD',
'RetinaNet',
'StrongBaseline',
'STGCN',
'YOLOX',
'HRNet',
'DETR',
}
class PredictConfig(object):
"""set config of preprocess, postprocess and visualize
Args:
infer_config (str): path of infer_cfg.yml
"""
def __init__(self, infer_config):
# parsing Yaml config for Preprocess
with open(infer_config) as f:
yml_conf = yaml.safe_load(f)
self.check_model(yml_conf)
self.arch = yml_conf['arch']
self.preprocess_infos = yml_conf['Preprocess']
self.min_subgraph_size = yml_conf['min_subgraph_size']
self.label_list = yml_conf['label_list']
self.use_dynamic_shape = yml_conf['use_dynamic_shape']
self.draw_threshold = yml_conf.get("draw_threshold", 0.5)
self.mask = yml_conf.get("mask", False)
self.tracker = yml_conf.get("tracker", None)
self.nms = yml_conf.get("NMS", None)
self.fpn_stride = yml_conf.get("fpn_stride", None)
color_pool = [(0, 255, 0), (255, 0, 0), (0, 0, 255), (255, 255, 0), (0, 255, 255)]
self.colors = {
label: color_pool[i % len(color_pool)] for i, label in enumerate(self.label_list)
}
if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
print('The RCNN export model is used for ONNX and it only supports batch_size = 1')
self.print_config()
def check_model(self, yml_conf):
"""
Raises:
ValueError: loaded model not in supported model type
"""
for support_model in SUPPORT_MODELS:
if support_model in yml_conf['arch']:
return True
raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf['arch'], SUPPORT_MODELS))
def print_config(self):
print('----------- Model Configuration -----------')
print('%s: %s' % ('Model Arch', self.arch))
print('%s: ' % ('Transform Order'))
for op_info in self.preprocess_infos:
print('--%s: %s' % ('transform op', op_info['type']))
print('--------------------------------------------')
def draw_bbox(image, outputs, infer_config):
for output in outputs:
cls_id, score, xmin, ymin, xmax, ymax = output
if score > infer_config.draw_threshold:
label = infer_config.label_list[int(cls_id)]
color = infer_config.colors[label]
cv2.rectangle(image, (int(xmin), int(ymin)), (int(xmax), int(ymax)), color, 2)
cv2.putText(
image,
"{}: {:.2f}".format(label, score),
(int(xmin), int(ymin - 5)),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
color,
2,
)
return image
def predict_image(imgsave_dir, infer_config, predictor, img_list):
# load preprocess transforms
transforms = Compose(infer_config.preprocess_infos)
errImgList = []
# Check and create subimg_save_dir if not exist
subimg_save_dir = os.path.join(imgsave_dir, 'subimages')
os.makedirs(subimg_save_dir, exist_ok=True)
first_image_skipped = False
total_time = 0
num_images = 0
# predict image
for img_path in tqdm(img_list):
img = cv2.imread(img_path)
if img is None:
print(f"Warning: Could not read image {img_path}. Skipping...")
errImgList.append(img_path)
continue
inputs = transforms(img_path)
inputs_name = [var.name for var in predictor.get_inputs()]
inputs = {k: inputs[k][None,] for k in inputs_name}
# Start timing
start_time = time.time()
outputs = predictor.run(output_names=None, input_feed=inputs)
# Stop timing
end_time = time.time()
inference_time = end_time - start_time
if not first_image_skipped:
first_image_skipped = True
else:
total_time += inference_time
num_images += 1
print(
f"ONNXRuntime predict time for {os.path.basename(img_path)}: {inference_time:.4f} seconds"
)
print("ONNXRuntime predict: ")
if infer_config.arch in ["HRNet"]:
print(np.array(outputs[0]))
else:
bboxes = np.array(outputs[0])
for bbox in bboxes:
if bbox[0] > -1 and bbox[1] > infer_config.draw_threshold:
print(f"{int(bbox[0])} {bbox[1]} " f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}")
# Save the subimages (crop from the original image)
subimg_counter = 1
for output in np.array(outputs[0]):
cls_id, score, xmin, ymin, xmax, ymax = output
if score > infer_config.draw_threshold:
label = infer_config.label_list[int(cls_id)]
subimg = img[int(max(ymin, 0)) : int(ymax), int(max(xmin, 0)) : int(xmax)]
if len(subimg) == 0:
continue
subimg_filename = f"{os.path.splitext(os.path.basename(img_path))[0]}_{label}_{xmin:.2f}_{ymin:.2f}_{xmax:.2f}_{ymax:.2f}.jpg"
subimg_path = os.path.join(subimg_save_dir, subimg_filename)
cv2.imwrite(subimg_path, subimg)
subimg_counter += 1
# Draw bounding boxes and save the image with bounding boxes
img_with_mask = img.copy()
for output in np.array(outputs[0]):
cls_id, score, xmin, ymin, xmax, ymax = output
if score > infer_config.draw_threshold:
cv2.rectangle(
img_with_mask,
(int(xmin), int(ymin)),
(int(xmax), int(ymax)),
(255, 255, 255),
-1,
) # 盖白
img_with_bbox = draw_bbox(img, np.array(outputs[0]), infer_config)
output_dir = imgsave_dir
os.makedirs(output_dir, exist_ok=True)
draw_box_dir = os.path.join(output_dir, 'draw_box')
mask_white_dir = os.path.join(output_dir, 'mask_white')
os.makedirs(draw_box_dir, exist_ok=True)
os.makedirs(mask_white_dir, exist_ok=True)
output_file_mask = os.path.join(mask_white_dir, os.path.basename(img_path))
output_file_bbox = os.path.join(draw_box_dir, os.path.basename(img_path))
cv2.imwrite(output_file_mask, img_with_mask)
cv2.imwrite(output_file_bbox, img_with_bbox)
avg_time_per_image = total_time / num_images if num_images > 0 else 0
print(f"Total inference time for {num_images} images: {total_time:.4f} seconds")
print(f"Average time per image: {avg_time_per_image:.4f} seconds")
print("ErrorImgs:")
print(errImgList)
def predict(img_path: str, predictor, infer_config) -> List[Bbox]:
transforms = Compose(infer_config.preprocess_infos)
inputs = transforms(img_path)
inputs_name = [var.name for var in predictor.get_inputs()]
inputs = {k: inputs[k][None,] for k in inputs_name}
outputs = predictor.run(output_names=None, input_feed=inputs)[0]
res = []
for output in outputs:
cls_name = infer_config.label_list[int(output[0])]
score = output[1]
xmin = int(max(output[2], 0))
ymin = int(max(output[3], 0))
xmax = int(output[4])
ymax = int(output[5])
if score > infer_config.draw_threshold:
res.append(Bbox(xmin, ymin, ymax - ymin, xmax - xmin, cls_name, score))
return res