diff --git a/README.md b/README.md index e7c6e4e..e6bea46 100644 --- a/README.md +++ b/README.md @@ -14,7 +14,7 @@ English | 中文版本 TexTeller is a ViT-based model designed for end-to-end formula recognition. It can recognize formulas in natural images and convert them into LaTeX-style formulas. -TexTeller is trained on a larger dataset of image-formula pairs (a 550K dataset available [here](https://huggingface.co/datasets/OleehyO/latex-formulas)), **exhibits superior generalization ability and higher accuracy compared to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)**, which uses approximately 100K data points. This larger dataset enables TexTeller to cover most usage scenarios more effectively. +TexTeller is trained on a larger dataset of image-formula pairs (a 550K dataset available [here](https://huggingface.co/datasets/OleehyO/latex-formulas)), **exhibits superior generalization ability and higher accuracy compared to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)**, which uses approximately 100K data points. This larger dataset enables TexTeller to cover most usage scenarios more effectively( **excluding scanned images and handwritten formulas** ). > A TexTeller checkpoint trained on a 5.5M dataset will be released soon. ## Prerequisites diff --git a/assets/README_zh.md b/assets/README_zh.md index 73469d2..260915e 100644 --- a/assets/README_zh.md +++ b/assets/README_zh.md @@ -14,7 +14,7 @@ TexTeller是一个基于ViT的端到端公式识别模型,可以把图片转换为对应的latex公式 -TexTeller用了550K的图片-公式对进行训练(数据集可以在[这里](https://huggingface.co/datasets/OleehyO/latex-formulas)获取),相比于[LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)(使用了一个100K的数据集),TexTeller具有**更强的泛化能力**以及**更高的准确率**,可以**覆盖大部分的使用场景**。 +TexTeller用了550K的图片-公式对进行训练(数据集可以在[这里](https://huggingface.co/datasets/OleehyO/latex-formulas)获取),相比于[LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)(使用了一个100K的数据集),TexTeller具有**更强的泛化能力**以及**更高的准确率**,可以覆盖大部分的使用场景(**扫描图片,手写公式除外**)。 > 我们马上就会发布一个使用5.5M数据集进行训练的TexTeller checkpoint @@ -26,7 +26,6 @@ pytorch > 注意: 只有CUDA版本>= 12.0被完全测试过,所以最好使用>= 12.0的CUDA版本 - ## Getting Started 1. 克隆本仓库: @@ -159,4 +158,4 @@ python -m models.ocr_model.train.train ## Acknowledgements -Thanks to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) which has brought me a lot of inspiration, and [im2latex-100K](https://zenodo.org/records/56198#.V2px0jXT6eA) which enriches our dataset. +Thanks to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) which has brought me a lot of inspiration, and [im2latex-100K](https://zenodo.org/records/56198#.V2px0jXT6eA) which enriches our dataset. \ No newline at end of file