写好了ocr_model训练脚本的大致框架

This commit is contained in:
三洋三洋
2024-01-23 04:23:08 +00:00
parent 703ac7441c
commit 9d27ee0585
7 changed files with 106 additions and 0 deletions

View File

@@ -0,0 +1,63 @@
from ....globals import (
VOCAB_SIZE,
OCR_IMG_SIZE,
OCR_IMG_CHANNELS
)
from typing import (
Tuple
)
from transformers import (
DeiTConfig,
DeiTModel,
RobertaConfig,
RobertaModel,
RobertaTokenizerFast,
VisionEncoderDecoderConfig,
VisionEncoderDecoderModel
)
class TexTeller:
def __init__(self, encoder_path=None, decoder_path=None, tokenizer_path=None):
self.tokenizer = self.get_tokenizer(tokenizer_path)
assert not (encoder_path is None and decoder_path is not None)
assert not (encoder_path is not None and decoder_path is None)
if encoder_path is None:
encoder_config = DeiTConfig(
img_size=OCR_IMG_SIZE,
num_channels=OCR_IMG_CHANNELS
)
decoder_config = RobertaConfig(
vocab_size=VOCAB_SIZE,
is_decoder=True
)
model_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(
encoder_config,
decoder_config
)
self.model = VisionEncoderDecoderModel(model_config)
else:
self.model = VisionEncoderDecoderModel.from_pretrained(
encoder_path,
decoder_path
)
...
@classmethod
def get_tokenizer(tokenizer_path: str = None) -> RobertaTokenizerFast:
if tokenizer_path is None:
return RobertaTokenizerFast()
else:
return RobertaTokenizerFast.from_pretrained(tokenizer_path)