Merge pull request #59 from OleehyO/pre_release

Pre release
This commit is contained in:
OleehyO
2024-06-22 23:56:45 +08:00
committed by GitHub
9 changed files with 87 additions and 33 deletions

View File

@@ -209,11 +209,12 @@ python server.py
| `-ckpt` | The path to the weights file,*default is TexTeller's pretrained weights*. |
| `-tknz` | The path to the tokenizer,*default is TexTeller's tokenizer*. |
| `-port` | The server's service port,*default is 8000*. |
| `--inference-mode` | Whether to use GPU(cuda or mps) for inference,*default is CPU*. |
| `--inference-mode` | Whether to use "cuda" or "mps" for inference,*default is "cpu"*. |
| `--num_beams` | The number of beams for beam search,*default is 1*. |
| `--num_replicas` | The number of service replicas to run on the server,*default is 1 replica*. You can use more replicas to achieve greater throughput.|
| `--ncpu_per_replica` | The number of CPU cores used per service replica,*default is 1*.|
| `--ngpu_per_replica` | The number of GPUs used per service replica,*default is 1*. You can set this value between 0 and 1 to run multiple service replicas on one GPU to share the GPU, thereby improving GPU utilization. (Note, if --num_replicas is 2, --ngpu_per_replica is 0.7, then 2 GPUs must be available) |
| `-onnx` | Perform inference using Onnx Runtime, *disabled by default* |
> [!NOTE]
> A client demo can be found at `src/client/demo.py`, you can refer to `demo.py` to send requests to the server

View File

@@ -247,11 +247,12 @@ python server.py
| `-ckpt` | 权重文件的路径,*默认为TexTeller的预训练权重*。|
| `-tknz` | 分词器的路径,*默认为TexTeller的分词器*。|
| `-port` | 服务器的服务端口,*默认是8000*。|
| `--inference-mode` | 是否使用GPU(cudamps)推理,*默认为CPU*。|
| `--inference-mode` | 使用"cuda"或"mps"推理,*默认为"cpu"*。|
| `--num_beams` | beam search的beam数量*默认是1*。|
| `--num_replicas` | 在服务器上运行的服务副本数量,*默认1个副本*。你可以使用更多的副本来获取更大的吞吐量。|
| `--ncpu_per_replica` | 每个服务副本所用的CPU核心数*默认为1*。|
| `--ngpu_per_replica` | 每个服务副本所用的GPU数量*默认为1*。你可以把这个值设置成 0~1之间的数这样会在一个GPU上运行多个服务副本来共享GPU从而提高GPU的利用率。(注意,如果 --num_replicas 2, --ngpu_per_replica 0.7, 那么就必须要有2个GPU可用) |
| `-onnx` | 使用Onnx Runtime进行推理*默认不使用*。|
> [!NOTE]
> 一个客户端demo可以在 `TexTeller/client/demo.py`找到,你可以参考 `demo.py`来给server发送请求

View File

@@ -20,6 +20,7 @@ install_requires = [
"streamlit-paste-button",
"shapely",
"pyclipper",
"optimum[exporters]"
]
# Add platform-specific dependencies

View File

@@ -6,7 +6,7 @@ det_server_url = "http://127.0.0.1:8000/fdet"
img_path = "/your/image/path/"
with open(img_path, 'rb') as img:
files = {'img': img}
response = requests.post(det_server_url, files=files)
# response = requests.post(rec_server_url, files=files)
response = requests.post(rec_server_url, files=files)
# response = requests.post(det_server_url, files=files)
print(response.text)

View File

@@ -1,4 +1,5 @@
from pathlib import Path
from optimum.onnxruntime import ORTModelForVision2Seq
from ...globals import (
VOCAB_SIZE,
@@ -10,7 +11,7 @@ from ...globals import (
from transformers import (
RobertaTokenizerFast,
VisionEncoderDecoderModel,
VisionEncoderDecoderConfig,
VisionEncoderDecoderConfig
)
@@ -26,9 +27,13 @@ class TexTeller(VisionEncoderDecoderModel):
super().__init__(config=config)
@classmethod
def from_pretrained(cls, model_path: str = None):
def from_pretrained(cls, model_path: str = None, use_onnx=False, onnx_provider=None):
if model_path is None or model_path == 'default':
return VisionEncoderDecoderModel.from_pretrained(cls.REPO_NAME)
if not use_onnx:
return VisionEncoderDecoderModel.from_pretrained(cls.REPO_NAME)
else:
use_gpu = True if onnx_provider == 'cuda' else False
return ORTModelForVision2Seq.from_pretrained(cls.REPO_NAME, provider="CUDAExecutionProvider" if use_gpu else "CPUExecutionProvider")
model_path = Path(model_path).resolve()
return VisionEncoderDecoderModel.from_pretrained(str(model_path))

View File

@@ -1,4 +1,5 @@
{
"_name_or_path": "OleehyO/TexTeller",
"architectures": [
"VisionEncoderDecoderModel"
],
@@ -10,9 +11,11 @@
"architectures": null,
"attention_dropout": 0.0,
"bad_words_ids": null,
"begin_suppress_tokens": null,
"bos_token_id": 0,
"chunk_size_feed_forward": 0,
"classifier_dropout": 0.0,
"cross_attention_hidden_size": 768,
"d_model": 1024,
"decoder_attention_heads": 16,
"decoder_ffn_dim": 4096,
@@ -23,9 +26,9 @@
"do_sample": false,
"dropout": 0.1,
"early_stopping": false,
"cross_attention_hidden_size": 768,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": 2,
"exponential_decay_length_penalty": null,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
@@ -40,9 +43,10 @@
"LABEL_0": 0,
"LABEL_1": 1
},
"layernorm_embedding": true,
"length_penalty": 1.0,
"max_length": 20,
"max_position_embeddings": 512,
"max_position_embeddings": 1024,
"min_length": 0,
"model_type": "trocr",
"no_repeat_ngram_size": 0,
@@ -62,8 +66,10 @@
"return_dict_in_generate": false,
"scale_embedding": false,
"sep_token_id": null,
"suppress_tokens": null,
"task_specific_params": null,
"temperature": 1.0,
"tf_legacy_loss": false,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
@@ -71,10 +77,11 @@
"top_p": 1.0,
"torch_dtype": null,
"torchscript": false,
"transformers_version": "4.12.0.dev0",
"typical_p": 1.0,
"use_bfloat16": false,
"use_cache": false,
"vocab_size": 50265
"use_learned_position_embeddings": true,
"vocab_size": 15000
},
"encoder": {
"_name_or_path": "",
@@ -82,15 +89,18 @@
"architectures": null,
"attention_probs_dropout_prob": 0.0,
"bad_words_ids": null,
"begin_suppress_tokens": null,
"bos_token_id": null,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": null,
"decoder_start_token_id": null,
"diversity_penalty": 0.0,
"do_sample": false,
"early_stopping": false,
"cross_attention_hidden_size": null,
"encoder_no_repeat_ngram_size": 0,
"encoder_stride": 16,
"eos_token_id": null,
"exponential_decay_length_penalty": null,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
@@ -101,7 +111,7 @@
"0": "LABEL_0",
"1": "LABEL_1"
},
"image_size": 384,
"image_size": 448,
"initializer_range": 0.02,
"intermediate_size": 3072,
"is_decoder": false,
@@ -119,7 +129,7 @@
"num_attention_heads": 12,
"num_beam_groups": 1,
"num_beams": 1,
"num_channels": 3,
"num_channels": 1,
"num_hidden_layers": 12,
"num_return_sequences": 1,
"output_attentions": false,
@@ -136,8 +146,10 @@
"return_dict": true,
"return_dict_in_generate": false,
"sep_token_id": null,
"suppress_tokens": null,
"task_specific_params": null,
"temperature": 1.0,
"tf_legacy_loss": false,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
@@ -145,12 +157,12 @@
"top_p": 1.0,
"torch_dtype": null,
"torchscript": false,
"transformers_version": "4.12.0.dev0",
"typical_p": 1.0,
"use_bfloat16": false
},
"is_encoder_decoder": true,
"model_type": "vision-encoder-decoder",
"tie_word_embeddings": false,
"torch_dtype": "float32",
"transformers_version": null
"transformers_version": "4.41.2",
"use_cache": true
}

View File

@@ -20,7 +20,9 @@ def inference(
) -> List[str]:
if imgs == []:
return []
model.eval()
if hasattr(model, 'eval'):
# not onnx session, turn model.eval()
model.eval()
if isinstance(imgs[0], str):
imgs = convert2rgb(imgs)
else: # already numpy array(rgb format)
@@ -29,7 +31,9 @@ def inference(
imgs = inference_transform(imgs)
pixel_values = torch.stack(imgs)
model = model.to(accelerator)
if hasattr(model, 'eval'):
# not onnx session, move weights to device
model = model.to(accelerator)
pixel_values = pixel_values.to(accelerator)
generate_config = GenerationConfig(

View File

@@ -1,3 +1,4 @@
import sys
import argparse
import tempfile
import time
@@ -17,6 +18,10 @@ from models.det_model.inference import PredictConfig
from models.ocr_model.utils.to_katex import to_katex
PYTHON_VERSION = str(sys.version_info.major) + '.' + str(sys.version_info.minor)
LIBPATH = Path(sys.executable).parent.parent / 'lib' / ('python' + PYTHON_VERSION) / 'site-packages'
CUDNNPATH = LIBPATH / 'nvidia' / 'cudnn' / 'lib'
parser = argparse.ArgumentParser()
parser.add_argument(
'-ckpt', '--checkpoint_dir', type=str
@@ -31,6 +36,7 @@ parser.add_argument('--ngpu_per_replica', type=float, default=0.0)
parser.add_argument('--inference-mode', type=str, default='cpu')
parser.add_argument('--num_beams', type=int, default=1)
parser.add_argument('-onnx', action='store_true', help='using onnx runtime')
args = parser.parse_args()
if args.ngpu_per_replica > 0 and not args.inference_mode == 'cuda':
@@ -41,7 +47,7 @@ if args.ngpu_per_replica > 0 and not args.inference_mode == 'cuda':
num_replicas=args.num_replicas,
ray_actor_options={
"num_cpus": args.ncpu_per_replica,
"num_gpus": args.ngpu_per_replica
"num_gpus": args.ngpu_per_replica * 1.0 / 2
}
)
class TexTellerRecServer:
@@ -50,14 +56,16 @@ class TexTellerRecServer:
checkpoint_path: str,
tokenizer_path: str,
inf_mode: str = 'cpu',
use_onnx: bool = False,
num_beams: int = 1
) -> None:
self.model = TexTeller.from_pretrained(checkpoint_path)
self.model = TexTeller.from_pretrained(checkpoint_path, use_onnx=use_onnx, onnx_provider=inf_mode)
self.tokenizer = TexTeller.get_tokenizer(tokenizer_path)
self.inf_mode = inf_mode
self.num_beams = num_beams
self.model = self.model.to(inf_mode) if inf_mode != 'cpu' else self.model
if not use_onnx:
self.model = self.model.to(inf_mode) if inf_mode != 'cpu' else self.model
def predict(self, image_nparray) -> str:
return to_katex(rec_inference(
@@ -65,14 +73,28 @@ class TexTellerRecServer:
accelerator=self.inf_mode, num_beams=self.num_beams
)[0])
@serve.deployment(num_replicas=args.num_replicas)
@serve.deployment(
num_replicas=args.num_replicas,
ray_actor_options={
"num_cpus": args.ncpu_per_replica,
"num_gpus": args.ngpu_per_replica * 1.0 / 2,
"runtime_env": {
"env_vars": {
"LD_LIBRARY_PATH": f"{str(CUDNNPATH)}/:$LD_LIBRARY_PATH"
}
}
},
)
class TexTellerDetServer:
def __init__(
self
self,
inf_mode='cpu'
):
self.infer_config = PredictConfig("./models/det_model/model/infer_cfg.yml")
self.latex_det_model = InferenceSession("./models/det_model/model/rtdetr_r50vd_6x_coco.onnx")
self.latex_det_model = InferenceSession(
"./models/det_model/model/rtdetr_r50vd_6x_coco.onnx",
providers=['CUDAExecutionProvider'] if inf_mode == 'cuda' else ['CPUExecutionProvider']
)
async def predict(self, image_nparray) -> str:
with tempfile.TemporaryDirectory() as temp_dir:
@@ -120,11 +142,12 @@ if __name__ == '__main__':
rec_server = TexTellerRecServer.bind(
ckpt_dir, tknz_dir,
inf_mode=args.inference_mode,
use_onnx=args.onnx,
num_beams=args.num_beams
)
det_server = None
if Path('./models/det_model/model/rtdetr_r50vd_6x_coco.onnx').exists():
det_server = TexTellerDetServer.bind()
det_server = TexTellerDetServer.bind(args.inference_mode)
ingress = Ingress.bind(det_server, rec_server)
# ingress_handle = serve.run(ingress, route_prefix="/predict")

View File

@@ -50,17 +50,20 @@ fail_gif_html = '''
'''
@st.cache_resource
def get_texteller():
return TexTeller.from_pretrained(os.environ['CHECKPOINT_DIR'])
def get_texteller(use_onnx, accelerator):
return TexTeller.from_pretrained(os.environ['CHECKPOINT_DIR'], use_onnx=use_onnx, onnx_provider=accelerator)
@st.cache_resource
def get_tokenizer():
return TexTeller.get_tokenizer(os.environ['TOKENIZER_DIR'])
@st.cache_resource
def get_det_models():
def get_det_models(accelerator):
infer_config = PredictConfig("./models/det_model/model/infer_cfg.yml")
latex_det_model = InferenceSession("./models/det_model/model/rtdetr_r50vd_6x_coco.onnx")
latex_det_model = InferenceSession(
"./models/det_model/model/rtdetr_r50vd_6x_coco.onnx",
providers=['CUDAExecutionProvider'] if accelerator == 'cuda' else ['CPUExecutionProvider']
)
return infer_config, latex_det_model
@st.cache_resource()
@@ -141,18 +144,22 @@ with st.sidebar:
on_change=change_side_bar
)
st.markdown("## Seepup Setting")
use_onnx = st.toggle("ONNX Runtime ")
############################## </sidebar> ##############################
################################ <page> ################################
texteller = get_texteller()
texteller = get_texteller(use_onnx, accelerator)
tokenizer = get_tokenizer()
latex_rec_models = [texteller, tokenizer]
if inf_mode == "Paragraph recognition":
infer_config, latex_det_model = get_det_models()
infer_config, latex_det_model = get_det_models(accelerator)
lang_ocr_models = get_ocr_models(accelerator)
st.markdown(html_string, unsafe_allow_html=True)