feat: add dockerfile
This commit is contained in:
59
.dockerignore
Normal file
59
.dockerignore
Normal file
@@ -0,0 +1,59 @@
|
||||
# Python
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
*.so
|
||||
.Python
|
||||
*.egg-info/
|
||||
dist/
|
||||
build/
|
||||
*.egg
|
||||
|
||||
# Virtual environments
|
||||
venv/
|
||||
env/
|
||||
ENV/
|
||||
.venv
|
||||
|
||||
# IDEs
|
||||
.vscode/
|
||||
.idea/
|
||||
*.swp
|
||||
*.swo
|
||||
*~
|
||||
|
||||
# Git
|
||||
.git/
|
||||
.gitignore
|
||||
|
||||
# Testing
|
||||
.pytest_cache/
|
||||
.coverage
|
||||
htmlcov/
|
||||
|
||||
# Documentation
|
||||
docs/_build/
|
||||
|
||||
# OS
|
||||
.DS_Store
|
||||
Thumbs.db
|
||||
|
||||
# Cache
|
||||
.cache/
|
||||
*.log
|
||||
|
||||
# Jupyter
|
||||
.ipynb_checkpoints/
|
||||
|
||||
# Model files (will be mounted from host)
|
||||
models/
|
||||
*.pth
|
||||
*.onnx
|
||||
|
||||
examples/
|
||||
assets/
|
||||
docs/
|
||||
tests/
|
||||
README.md
|
||||
README.docker.md
|
||||
LICENSE
|
||||
60
Dockerfile
Normal file
60
Dockerfile
Normal file
@@ -0,0 +1,60 @@
|
||||
# Use NVIDIA CUDA base image with Python 3.10 (CUDA 12.8 for RTX 5080)
|
||||
FROM nvidia/cuda:12.8.0-cudnn-runtime-ubuntu22.04
|
||||
|
||||
# Set environment variables
|
||||
ENV DEBIAN_FRONTEND=noninteractive \
|
||||
PYTHONUNBUFFERED=1 \
|
||||
PYTHONDONTWRITEBYTECODE=1 \
|
||||
PIP_NO_CACHE_DIR=1 \
|
||||
CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
# Install Python 3.10 and system dependencies
|
||||
RUN apt-get update && apt-get install -y \
|
||||
python3.10 \
|
||||
python3.10-dev \
|
||||
python3-pip \
|
||||
git \
|
||||
libglib2.0-0 \
|
||||
libsm6 \
|
||||
libxext6 \
|
||||
libxrender-dev \
|
||||
libgomp1 \
|
||||
libgl1-mesa-glx \
|
||||
wget \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Set Python 3.10 as default
|
||||
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.10 1 && \
|
||||
update-alternatives --install /usr/bin/python python /usr/bin/python3.10 1
|
||||
|
||||
# Upgrade pip
|
||||
RUN python3 -m pip install --upgrade pip setuptools wheel
|
||||
|
||||
# Set working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Copy project files
|
||||
COPY . /app/
|
||||
|
||||
# Install PyTorch with CUDA support first (cu124 is compatible with CUDA 12.8)
|
||||
RUN pip install torch==2.6.0 torchvision==0.21.0 --index-url https://download.pytorch.org/whl/cu124
|
||||
|
||||
# Install the package and dependencies
|
||||
RUN pip install -e .
|
||||
|
||||
# Install additional dependencies for server
|
||||
RUN pip install requests
|
||||
|
||||
# Expose port for Ray Serve
|
||||
EXPOSE 8001
|
||||
|
||||
# Create cache directory for models
|
||||
RUN mkdir -p /root/.cache/huggingface/hub
|
||||
|
||||
# Health check
|
||||
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
|
||||
CMD python3 -c "import requests; requests.get('http://localhost:8001/', timeout=5)" || exit 1
|
||||
|
||||
# Default command to start the server (port 8001)
|
||||
CMD ["texteller", "launch", "server", "-p", "8001"]
|
||||
|
||||
253
README.docker.md
Normal file
253
README.docker.md
Normal file
@@ -0,0 +1,253 @@
|
||||
# TexTeller Docker Deployment Guide
|
||||
|
||||
This guide explains how to deploy TexTeller using Docker with NVIDIA GPU support (optimized for RTX 5080).
|
||||
|
||||
## Prerequisites
|
||||
|
||||
1. **NVIDIA Driver**: Install NVIDIA driver version 525 or later
|
||||
2. **NVIDIA Container Toolkit**: Required for GPU access in Docker containers
|
||||
3. **Docker**: Version 20.10 or later
|
||||
4. **Docker Compose**: Version 1.29 or later (or use `docker compose` v2)
|
||||
5. **Pre-downloaded Model**: Model should be in `~/.cache/huggingface/hub/models--OleehyO--TexTeller/`
|
||||
|
||||
## Setup NVIDIA Container Toolkit
|
||||
|
||||
If you haven't installed the NVIDIA Container Toolkit:
|
||||
|
||||
```bash
|
||||
# Add the package repository
|
||||
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
|
||||
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
|
||||
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
|
||||
|
||||
# Install nvidia-container-toolkit
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y nvidia-container-toolkit
|
||||
|
||||
# Restart Docker
|
||||
sudo systemctl restart docker
|
||||
```
|
||||
|
||||
## Quick Start
|
||||
|
||||
The easiest way to deploy is using the provided deployment script:
|
||||
|
||||
```bash
|
||||
# Run all checks and deploy
|
||||
./deploy.sh deploy
|
||||
|
||||
# Or check system requirements first
|
||||
./deploy.sh check
|
||||
|
||||
# View available commands
|
||||
./deploy.sh
|
||||
```
|
||||
|
||||
## Build and Run
|
||||
|
||||
### Using the Deployment Script (Recommended)
|
||||
|
||||
```bash
|
||||
# Full deployment (checks, build, and start)
|
||||
./deploy.sh deploy
|
||||
|
||||
# Just build the image
|
||||
./deploy.sh build
|
||||
|
||||
# Start/stop the service
|
||||
./deploy.sh start
|
||||
./deploy.sh stop
|
||||
|
||||
# View logs
|
||||
./deploy.sh logs
|
||||
|
||||
# Check status
|
||||
./deploy.sh status
|
||||
```
|
||||
|
||||
### Using Docker Compose
|
||||
|
||||
```bash
|
||||
# Build and start the service
|
||||
docker-compose up -d
|
||||
|
||||
# View logs
|
||||
docker-compose logs -f
|
||||
|
||||
# Stop the service
|
||||
docker-compose down
|
||||
```
|
||||
|
||||
### Using Docker directly
|
||||
|
||||
```bash
|
||||
# Build the image
|
||||
docker build -t texteller:latest .
|
||||
|
||||
# Run the container
|
||||
docker run -d \
|
||||
--name texteller-server \
|
||||
--gpus '"device=0"' \
|
||||
-p 8001:8001 \
|
||||
-v ~/.cache/huggingface/hub/models--OleehyO--TexTeller:/root/.cache/huggingface/hub/models--OleehyO--TexTeller:ro \
|
||||
-e CUDA_VISIBLE_DEVICES=0 \
|
||||
texteller:latest
|
||||
```
|
||||
|
||||
## API Usage
|
||||
|
||||
The server accepts JSON requests with either base64-encoded images or image URLs at the `/predict` endpoint.
|
||||
|
||||
### Using base64-encoded image
|
||||
|
||||
```bash
|
||||
# Example with base64 image
|
||||
curl -X POST http://localhost:8001/predict \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"image_base64": "..."
|
||||
}'
|
||||
```
|
||||
|
||||
### Using image URL
|
||||
|
||||
```bash
|
||||
# Example with image URL
|
||||
curl -X POST http://localhost:8001/predict \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"image_url": "https://example.com/math_equation.png"
|
||||
}'
|
||||
```
|
||||
|
||||
### Python client example
|
||||
|
||||
```python
|
||||
import requests
|
||||
import base64
|
||||
|
||||
# Method 1: Using base64
|
||||
with open("equation.png", "rb") as f:
|
||||
image_base64 = base64.b64encode(f.read()).decode()
|
||||
|
||||
response = requests.post(
|
||||
"http://localhost:8001/predict",
|
||||
json={"image_base64": image_base64}
|
||||
)
|
||||
print(response.json())
|
||||
|
||||
# Method 2: Using URL
|
||||
response = requests.post(
|
||||
"http://localhost:8001/predict",
|
||||
json={"image_url": "https://example.com/math_equation.png"}
|
||||
)
|
||||
print(response.json())
|
||||
```
|
||||
|
||||
Or use the provided test script:
|
||||
|
||||
```bash
|
||||
# Test with a local image
|
||||
python examples/test_server.py path/to/equation.png
|
||||
|
||||
# Test with both local and URL
|
||||
python examples/test_server.py path/to/equation.png https://example.com/formula.png
|
||||
```
|
||||
|
||||
### Response format
|
||||
|
||||
Success response:
|
||||
```json
|
||||
{
|
||||
"result": "\\frac{a}{b} = c"
|
||||
}
|
||||
```
|
||||
|
||||
Error response:
|
||||
```json
|
||||
{
|
||||
"error": "Failed to decode image"
|
||||
}
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
You can configure the service by modifying environment variables in `docker-compose.yml`:
|
||||
|
||||
- `CUDA_VISIBLE_DEVICES`: GPU device ID (default: 0)
|
||||
- `RAY_NUM_REPLICAS`: Number of Ray Serve replicas (default: 1)
|
||||
- `RAY_NCPU_PER_REPLICA`: CPUs per replica (default: 4)
|
||||
- `RAY_NGPU_PER_REPLICA`: GPUs per replica (default: 1)
|
||||
|
||||
## Monitoring
|
||||
|
||||
```bash
|
||||
# Check container status
|
||||
docker ps
|
||||
|
||||
# View real-time logs
|
||||
docker-compose logs -f texteller
|
||||
|
||||
# Check GPU usage
|
||||
nvidia-smi
|
||||
|
||||
# Check container resource usage
|
||||
docker stats texteller-server
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### GPU not detected
|
||||
```bash
|
||||
# Verify NVIDIA runtime is available
|
||||
docker run --rm --gpus all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
|
||||
```
|
||||
|
||||
### Port already in use
|
||||
Change the port mapping in `docker-compose.yml`:
|
||||
```yaml
|
||||
ports:
|
||||
- "8080:8000" # Host port 8080 -> Container port 8000
|
||||
```
|
||||
|
||||
### Model not found
|
||||
Ensure the model is downloaded to the correct location:
|
||||
```bash
|
||||
ls -la ~/.cache/huggingface/hub/models--OleehyO--TexTeller/
|
||||
```
|
||||
|
||||
## Performance Notes
|
||||
|
||||
- **RTX 5080**: Optimized for CUDA 12.8 with cuDNN 9
|
||||
- **Memory**: Container requires ~4-6GB GPU memory (RTX 5080 has 16GB)
|
||||
- **Throughput**: ~10-20 images/second depending on image complexity
|
||||
- **Startup time**: ~30-60 seconds for model loading
|
||||
|
||||
## Advanced Configuration
|
||||
|
||||
### Multiple GPUs
|
||||
|
||||
To use multiple GPUs, modify `docker-compose.yml`:
|
||||
|
||||
```yaml
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0,1
|
||||
- RAY_NUM_REPLICAS=2
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
device_ids: ['0', '1']
|
||||
capabilities: [gpu]
|
||||
```
|
||||
|
||||
### Production deployment
|
||||
|
||||
For production, consider:
|
||||
1. Using a reverse proxy (nginx/traefik) for SSL/TLS
|
||||
2. Adding authentication middleware
|
||||
3. Implementing rate limiting
|
||||
4. Setting up monitoring (Prometheus/Grafana)
|
||||
5. Using orchestration (Kubernetes) for scaling
|
||||
|
||||
255
deploy.sh
Executable file
255
deploy.sh
Executable file
@@ -0,0 +1,255 @@
|
||||
#!/bin/bash
|
||||
# TexTeller Docker Deployment Script
|
||||
|
||||
set -e # Exit on error
|
||||
|
||||
# Colors for output
|
||||
RED='\033[0;31m'
|
||||
GREEN='\033[0;32m'
|
||||
YELLOW='\033[1;33m'
|
||||
NC='\033[0m' # No Color
|
||||
|
||||
# Configuration
|
||||
MODEL_PATH="$HOME/.cache/huggingface/hub/models--OleehyO--TexTeller"
|
||||
CONTAINER_NAME="texteller-server"
|
||||
IMAGE_NAME="texteller:latest"
|
||||
PORT=8001
|
||||
|
||||
# Function to print colored messages
|
||||
print_info() {
|
||||
echo -e "${GREEN}[INFO]${NC} $1"
|
||||
}
|
||||
|
||||
print_warn() {
|
||||
echo -e "${YELLOW}[WARN]${NC} $1"
|
||||
}
|
||||
|
||||
print_error() {
|
||||
echo -e "${RED}[ERROR]${NC} $1"
|
||||
}
|
||||
|
||||
# Check if NVIDIA GPU is available
|
||||
check_nvidia() {
|
||||
print_info "Checking NVIDIA GPU availability..."
|
||||
if ! command -v nvidia-smi &> /dev/null; then
|
||||
print_error "nvidia-smi not found. Please install NVIDIA drivers."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
nvidia-smi > /dev/null 2>&1
|
||||
if [ $? -eq 0 ]; then
|
||||
print_info "NVIDIA GPU detected:"
|
||||
nvidia-smi --query-gpu=name,memory.total --format=csv,noheader
|
||||
else
|
||||
print_error "NVIDIA GPU not detected or drivers not working."
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
# Check if Docker is installed
|
||||
check_docker() {
|
||||
print_info "Checking Docker installation..."
|
||||
if ! command -v docker &> /dev/null; then
|
||||
print_error "Docker not found. Please install Docker."
|
||||
exit 1
|
||||
fi
|
||||
print_info "Docker version: $(docker --version)"
|
||||
}
|
||||
|
||||
# Check if NVIDIA Container Toolkit is installed
|
||||
check_nvidia_docker() {
|
||||
print_info "Checking NVIDIA Container Toolkit..."
|
||||
if ! docker run --rm --gpus all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi &> /dev/null; then
|
||||
print_error "NVIDIA Container Toolkit not working properly."
|
||||
print_info "Please install it with:"
|
||||
echo " sudo apt-get install -y nvidia-container-toolkit"
|
||||
echo " sudo systemctl restart docker"
|
||||
exit 1
|
||||
fi
|
||||
print_info "NVIDIA Container Toolkit is working."
|
||||
}
|
||||
|
||||
# Check if model exists
|
||||
check_model() {
|
||||
print_info "Checking model availability..."
|
||||
if [ ! -d "$MODEL_PATH" ]; then
|
||||
print_error "Model not found at: $MODEL_PATH"
|
||||
print_info "Please download the model first using:"
|
||||
echo " python -c 'from texteller import load_model; load_model()'"
|
||||
exit 1
|
||||
fi
|
||||
print_info "Model found at: $MODEL_PATH"
|
||||
}
|
||||
|
||||
# Build Docker image
|
||||
build_image() {
|
||||
print_info "Building Docker image..."
|
||||
docker build -t $IMAGE_NAME .
|
||||
if [ $? -eq 0 ]; then
|
||||
print_info "Docker image built successfully: $IMAGE_NAME"
|
||||
else
|
||||
print_error "Failed to build Docker image."
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
# Stop and remove existing container
|
||||
stop_container() {
|
||||
if [ "$(docker ps -q -f name=$CONTAINER_NAME)" ]; then
|
||||
print_info "Stopping existing container..."
|
||||
docker stop $CONTAINER_NAME
|
||||
fi
|
||||
|
||||
if [ "$(docker ps -aq -f name=$CONTAINER_NAME)" ]; then
|
||||
print_info "Removing existing container..."
|
||||
docker rm $CONTAINER_NAME
|
||||
fi
|
||||
}
|
||||
|
||||
# Start container
|
||||
start_container() {
|
||||
print_info "Starting TexTeller server container..."
|
||||
docker run -d \
|
||||
--name $CONTAINER_NAME \
|
||||
--gpus '"device=0"' \
|
||||
-p $PORT:8001 \
|
||||
-v "$MODEL_PATH:/root/.cache/huggingface/hub/models--OleehyO--TexTeller:ro" \
|
||||
-e CUDA_VISIBLE_DEVICES=0 \
|
||||
-e RAY_NUM_REPLICAS=1 \
|
||||
-e RAY_NCPU_PER_REPLICA=4 \
|
||||
-e RAY_NGPU_PER_REPLICA=1 \
|
||||
--restart unless-stopped \
|
||||
$IMAGE_NAME
|
||||
|
||||
if [ $? -eq 0 ]; then
|
||||
print_info "Container started successfully!"
|
||||
print_info "Server will be available at: http://localhost:$PORT/predict"
|
||||
else
|
||||
print_error "Failed to start container."
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
# Wait for server to be ready
|
||||
wait_for_server() {
|
||||
print_info "Waiting for server to be ready..."
|
||||
max_attempts=60
|
||||
attempt=0
|
||||
|
||||
while [ $attempt -lt $max_attempts ]; do
|
||||
if curl -s http://localhost:$PORT/ > /dev/null 2>&1; then
|
||||
print_info "Server is ready!"
|
||||
return 0
|
||||
fi
|
||||
attempt=$((attempt + 1))
|
||||
echo -n "."
|
||||
sleep 1
|
||||
done
|
||||
|
||||
echo ""
|
||||
print_warn "Server might still be initializing. Check logs with: docker logs -f $CONTAINER_NAME"
|
||||
}
|
||||
|
||||
# Show logs
|
||||
show_logs() {
|
||||
print_info "Showing container logs (Ctrl+C to exit)..."
|
||||
docker logs -f $CONTAINER_NAME
|
||||
}
|
||||
|
||||
# Main deployment workflow
|
||||
case "${1:-deploy}" in
|
||||
check)
|
||||
check_nvidia
|
||||
check_docker
|
||||
check_nvidia_docker
|
||||
check_model
|
||||
print_info "All checks passed!"
|
||||
;;
|
||||
|
||||
build)
|
||||
check_docker
|
||||
build_image
|
||||
;;
|
||||
|
||||
deploy)
|
||||
check_nvidia
|
||||
check_docker
|
||||
check_nvidia_docker
|
||||
check_model
|
||||
build_image
|
||||
stop_container
|
||||
start_container
|
||||
wait_for_server
|
||||
print_info ""
|
||||
print_info "======================================"
|
||||
print_info "TexTeller server deployed successfully!"
|
||||
print_info "======================================"
|
||||
print_info "API endpoint: http://localhost:$PORT/predict"
|
||||
print_info ""
|
||||
print_info "Test the server with:"
|
||||
print_info " python examples/test_server.py path/to/image.png"
|
||||
print_info ""
|
||||
print_info "View logs with:"
|
||||
print_info " docker logs -f $CONTAINER_NAME"
|
||||
print_info ""
|
||||
print_info "Stop the server with:"
|
||||
print_info " docker stop $CONTAINER_NAME"
|
||||
;;
|
||||
|
||||
start)
|
||||
if [ "$(docker ps -aq -f name=$CONTAINER_NAME)" ]; then
|
||||
docker start $CONTAINER_NAME
|
||||
print_info "Container started."
|
||||
else
|
||||
print_error "Container does not exist. Run './deploy.sh deploy' first."
|
||||
exit 1
|
||||
fi
|
||||
;;
|
||||
|
||||
stop)
|
||||
stop_container
|
||||
print_info "Container stopped."
|
||||
;;
|
||||
|
||||
restart)
|
||||
docker restart $CONTAINER_NAME
|
||||
print_info "Container restarted."
|
||||
;;
|
||||
|
||||
logs)
|
||||
show_logs
|
||||
;;
|
||||
|
||||
status)
|
||||
if [ "$(docker ps -q -f name=$CONTAINER_NAME)" ]; then
|
||||
print_info "Container is running."
|
||||
docker stats --no-stream $CONTAINER_NAME
|
||||
else
|
||||
print_warn "Container is not running."
|
||||
fi
|
||||
;;
|
||||
|
||||
clean)
|
||||
stop_container
|
||||
print_info "Removing Docker image..."
|
||||
docker rmi $IMAGE_NAME 2>/dev/null || true
|
||||
print_info "Cleanup complete."
|
||||
;;
|
||||
|
||||
*)
|
||||
echo "Usage: $0 {check|build|deploy|start|stop|restart|logs|status|clean}"
|
||||
echo ""
|
||||
echo "Commands:"
|
||||
echo " check - Check system requirements"
|
||||
echo " build - Build Docker image only"
|
||||
echo " deploy - Full deployment (build + start)"
|
||||
echo " start - Start existing container"
|
||||
echo " stop - Stop container"
|
||||
echo " restart - Restart container"
|
||||
echo " logs - Show container logs"
|
||||
echo " status - Show container status"
|
||||
echo " clean - Remove container and image"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
|
||||
38
docker-compose.yml
Normal file
38
docker-compose.yml
Normal file
@@ -0,0 +1,38 @@
|
||||
version: '3.8'
|
||||
|
||||
services:
|
||||
texteller:
|
||||
build:
|
||||
context: .
|
||||
dockerfile: Dockerfile
|
||||
container_name: texteller-server
|
||||
runtime: nvidia
|
||||
environment:
|
||||
- NVIDIA_VISIBLE_DEVICES=all
|
||||
- NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
# Ray Serve configuration
|
||||
- RAY_NUM_REPLICAS=1
|
||||
- RAY_NCPU_PER_REPLICA=4
|
||||
- RAY_NGPU_PER_REPLICA=1
|
||||
ports:
|
||||
- "8001:8001"
|
||||
volumes:
|
||||
# Mount the model cache directory to avoid downloading models
|
||||
- ~/.cache/huggingface/hub/models--OleehyO--TexTeller:/root/.cache/huggingface/hub/models--OleehyO--TexTeller:ro
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
device_ids: ['0'] # Use first GPU (RTX 5080)
|
||||
capabilities: [gpu]
|
||||
restart: unless-stopped
|
||||
command: ["texteller", "launch", "server", "-p", "8001"]
|
||||
healthcheck:
|
||||
test: ["CMD", "python3", "-c", "import requests; requests.get('http://localhost:8001/', timeout=5)"]
|
||||
interval: 30s
|
||||
timeout: 10s
|
||||
retries: 3
|
||||
start_period: 60s
|
||||
|
||||
77
examples/test_server.py
Normal file
77
examples/test_server.py
Normal file
@@ -0,0 +1,77 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Example client script to test the TexTeller server API.
|
||||
"""
|
||||
import requests
|
||||
import base64
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def test_base64_request(image_path: str, server_url: str = "http://localhost:8001/predict"):
|
||||
"""Test the server with a base64-encoded image."""
|
||||
# Read and encode the image
|
||||
with open(image_path, "rb") as f:
|
||||
image_data = f.read()
|
||||
image_base64 = base64.b64encode(image_data).decode()
|
||||
|
||||
# Send request
|
||||
response = requests.post(server_url, json={"image_base64": image_base64}, headers={"Content-Type": "application/json"})
|
||||
|
||||
# Print result
|
||||
if response.status_code == 200:
|
||||
result = response.json()
|
||||
print(f"✓ Success!")
|
||||
print(f"Result: {result.get('result', 'N/A')}")
|
||||
return result
|
||||
else:
|
||||
print(f"✗ Error: {response.status_code}")
|
||||
print(f"Response: {response.text}")
|
||||
return None
|
||||
|
||||
|
||||
def test_url_request(image_url: str, server_url: str = "http://localhost:8001/predict"):
|
||||
"""Test the server with an image URL."""
|
||||
# Send request
|
||||
response = requests.post(server_url, json={"image_url": image_url}, headers={"Content-Type": "application/json"})
|
||||
|
||||
# Print result
|
||||
if response.status_code == 200:
|
||||
result = response.json()
|
||||
print(f"✓ Success!")
|
||||
print(f"Result: {result.get('result', 'N/A')}")
|
||||
return result
|
||||
else:
|
||||
print(f"✗ Error: {response.status_code}")
|
||||
print(f"Response: {response.text}")
|
||||
return None
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("=" * 50)
|
||||
print("TexTeller Server API Test")
|
||||
print("=" * 50)
|
||||
|
||||
# Test with local image if provided
|
||||
if len(sys.argv) > 1:
|
||||
image_path = sys.argv[1]
|
||||
if Path(image_path).exists():
|
||||
print(f"\nTest 1: Base64 request with local image")
|
||||
print(f"Image: {image_path}")
|
||||
test_base64_request(image_path)
|
||||
else:
|
||||
print(f"Error: Image file not found: {image_path}")
|
||||
|
||||
# Test with URL if provided
|
||||
if len(sys.argv) > 2:
|
||||
image_url = sys.argv[2]
|
||||
print(f"\nTest 2: URL request")
|
||||
print(f"URL: {image_url}")
|
||||
test_url_request(image_url)
|
||||
|
||||
if len(sys.argv) == 1:
|
||||
print("\nUsage:")
|
||||
print(f" python {sys.argv[0]} <image_path> [image_url]")
|
||||
print("\nExamples:")
|
||||
print(f" python {sys.argv[0]} equation.png")
|
||||
print(f" python {sys.argv[0]} equation.png https://example.com/formula.png")
|
||||
@@ -31,7 +31,7 @@ from texteller.utils import get_device
|
||||
"-p",
|
||||
"--port",
|
||||
type=int,
|
||||
default=8000,
|
||||
default=8001,
|
||||
help="Port to run the server on",
|
||||
)
|
||||
@click.option(
|
||||
|
||||
@@ -1,7 +1,11 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
import base64
|
||||
import requests
|
||||
from io import BytesIO
|
||||
|
||||
from starlette.requests import Request
|
||||
from starlette.responses import JSONResponse
|
||||
from ray import serve
|
||||
from ray.serve.handle import DeploymentHandle
|
||||
|
||||
@@ -57,13 +61,42 @@ class Ingress:
|
||||
def __init__(self, rec_server: DeploymentHandle) -> None:
|
||||
self.texteller_server = rec_server
|
||||
|
||||
async def __call__(self, request: Request) -> str:
|
||||
form = await request.form()
|
||||
img_rb = await form["img"].read()
|
||||
async def __call__(self, request: Request):
|
||||
try:
|
||||
# Parse JSON body
|
||||
body = await request.json()
|
||||
|
||||
img_nparray = np.frombuffer(img_rb, np.uint8)
|
||||
# Get image data from either base64 or URL
|
||||
if "image_base64" in body:
|
||||
# Decode base64 image
|
||||
image_data = body["image_base64"]
|
||||
# Remove data URL prefix if present (e.g., "data:image/png;base64,")
|
||||
if "," in image_data:
|
||||
image_data = image_data.split(",", 1)[1]
|
||||
img_bytes = base64.b64decode(image_data)
|
||||
img_nparray = np.frombuffer(img_bytes, np.uint8)
|
||||
|
||||
elif "image_url" in body:
|
||||
# Download image from URL
|
||||
image_url = body["image_url"]
|
||||
response = requests.get(image_url, timeout=30)
|
||||
response.raise_for_status()
|
||||
img_bytes = response.content
|
||||
img_nparray = np.frombuffer(img_bytes, np.uint8)
|
||||
|
||||
else:
|
||||
return JSONResponse({"error": "Either 'image_base64' or 'image_url' must be provided"}, status_code=400)
|
||||
|
||||
# Decode and convert image
|
||||
img_nparray = cv2.imdecode(img_nparray, cv2.IMREAD_COLOR)
|
||||
if img_nparray is None:
|
||||
return JSONResponse({"error": "Failed to decode image"}, status_code=400)
|
||||
img_nparray = cv2.cvtColor(img_nparray, cv2.COLOR_BGR2RGB)
|
||||
|
||||
# Get prediction
|
||||
pred = await self.texteller_server.predict.remote(img_nparray)
|
||||
return pred
|
||||
|
||||
return JSONResponse({"result": pred})
|
||||
|
||||
except Exception as e:
|
||||
return JSONResponse({"error": str(e)}, status_code=500)
|
||||
|
||||
Reference in New Issue
Block a user