merge dev后删除了resizer
This commit is contained in:
@@ -1,44 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
import os
|
|
||||||
import argparse
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from pathlib import Path
|
|
||||||
from PIL import Image
|
|
||||||
from .model.Resizer import Resizer
|
|
||||||
from .utils import preprocess_fn
|
|
||||||
|
|
||||||
from munch import Munch
|
|
||||||
|
|
||||||
|
|
||||||
def inference(args):
|
|
||||||
img = Image.open(args.image)
|
|
||||||
img = img.convert('RGB') if img.format == 'PNG' else img
|
|
||||||
processed_img = preprocess_fn({"pixel_values": [img]})
|
|
||||||
|
|
||||||
ckt_path = Path(args.checkpoint).resolve()
|
|
||||||
model = Resizer.from_pretrained(ckt_path)
|
|
||||||
model.eval()
|
|
||||||
inpu = torch.stack(processed_img['pixel_values'])
|
|
||||||
pred = model(inpu) * 1.25
|
|
||||||
print(pred)
|
|
||||||
|
|
||||||
...
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
cur_dirpath = os.getcwd()
|
|
||||||
script_dirpath = Path(__file__).resolve().parent
|
|
||||||
os.chdir(script_dirpath)
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument('-img', '--image', type=str, required=True)
|
|
||||||
parser.add_argument('-ckt', '--checkpoint', type=str, required=True)
|
|
||||||
|
|
||||||
args = parser.parse_args([
|
|
||||||
'-img', '/home/lhy/code/TeXify/src/models/resizer/foo5_140h.jpg',
|
|
||||||
'-ckt', '/home/lhy/code/TeXify/src/models/resizer/train/train_result_pred_height_v5'
|
|
||||||
])
|
|
||||||
inference(args)
|
|
||||||
|
|
||||||
os.chdir(cur_dirpath)
|
|
||||||
@@ -1,5 +0,0 @@
|
|||||||
from transformers import ResNetForImageClassification
|
|
||||||
|
|
||||||
class Resizer(ResNetForImageClassification):
|
|
||||||
def __init__(self, config):
|
|
||||||
super().__init__(config)
|
|
||||||
@@ -1,122 +0,0 @@
|
|||||||
import os
|
|
||||||
import datasets
|
|
||||||
|
|
||||||
from pathlib import Path
|
|
||||||
from transformers import (
|
|
||||||
ResNetConfig,
|
|
||||||
TrainingArguments,
|
|
||||||
Trainer
|
|
||||||
)
|
|
||||||
|
|
||||||
from ..utils import preprocess_fn
|
|
||||||
from ..model.Resizer import Resizer
|
|
||||||
from ...globals import NUM_CHANNELS, NUM_CLASSES, RESIZER_IMG_SIZE
|
|
||||||
|
|
||||||
|
|
||||||
def train():
|
|
||||||
cur_dirpath = os.getcwd()
|
|
||||||
script_dirpath = Path(__file__).resolve().parent
|
|
||||||
os.chdir(script_dirpath)
|
|
||||||
|
|
||||||
data = datasets.load_dataset("./dataset").shuffle(seed=42)
|
|
||||||
data = data.rename_column("images", "pixel_values")
|
|
||||||
data.flatten_indices()
|
|
||||||
data = data.with_transform(preprocess_fn)
|
|
||||||
train_data, test_data = data['train'], data['test']
|
|
||||||
|
|
||||||
config = ResNetConfig(
|
|
||||||
num_channels=NUM_CHANNELS,
|
|
||||||
num_labels=NUM_CLASSES,
|
|
||||||
img_size=RESIZER_IMG_SIZE
|
|
||||||
)
|
|
||||||
model = Resizer(config)
|
|
||||||
model = Resizer.from_pretrained("/home/lhy/code/TeXify/src/models/resizer/train/train_result_pred_height_v4/checkpoint-213000")
|
|
||||||
|
|
||||||
training_args = TrainingArguments(
|
|
||||||
# resume_from_checkpoint="/home/lhy/code/TeXify/src/models/resizer/train/train_result_pred_height_v3/checkpoint-94500",
|
|
||||||
max_grad_norm=1.0,
|
|
||||||
# use_cpu=True,
|
|
||||||
seed=42, # 随机种子,用于确保实验的可重复性
|
|
||||||
# data_seed=42, # data sampler的采样也固定
|
|
||||||
# full_determinism=True, # 使整个训练完全固定(这个设置会有害于模型训练,只用于debug)
|
|
||||||
|
|
||||||
output_dir='./train_result_pred_height_v5', # 输出目录
|
|
||||||
overwrite_output_dir=False, # 如果输出目录存在,不删除原先的内容
|
|
||||||
report_to=["tensorboard"], # 输出日志到TensorBoard,
|
|
||||||
#+通过在命令行:tensorboard --logdir ./logs 来查看日志
|
|
||||||
|
|
||||||
logging_dir=None, # TensorBoard日志文件的存储目录
|
|
||||||
log_level="info",
|
|
||||||
logging_strategy="steps", # 每隔一定步数记录一次日志
|
|
||||||
logging_steps=500, # 记录日志的步数间隔
|
|
||||||
logging_nan_inf_filter=False, # 对loss=nan或inf进行记录
|
|
||||||
|
|
||||||
num_train_epochs=50, # 总的训练轮数
|
|
||||||
# max_steps=3, # 训练的最大步骤数。如果设置了这个参数,
|
|
||||||
#+那么num_train_epochs将被忽略(通常用于调试)
|
|
||||||
|
|
||||||
# label_names = ['your_label_name'], # 指定data_loader中的标签名,如果不指定则默认为'labels'
|
|
||||||
|
|
||||||
per_device_train_batch_size=55, # 每个GPU的batch size
|
|
||||||
per_device_eval_batch_size=48*2, # 每个GPU的evaluation batch size
|
|
||||||
auto_find_batch_size=False, # 自动搜索合适的batch size(指数decay)
|
|
||||||
|
|
||||||
optim = 'adamw_torch', # 还提供了很多AdamW的变体(相较于经典的AdamW更加高效)
|
|
||||||
#+当设置了optim后,就不需要在Trainer中传入optimizer
|
|
||||||
lr_scheduler_type="cosine", # 设置lr_scheduler
|
|
||||||
warmup_ratio=0.1, # warmup占整个训练steps的比例
|
|
||||||
# warmup_steps=500, # 预热步数
|
|
||||||
weight_decay=0, # 权重衰减
|
|
||||||
learning_rate=5e-5, # 学习率
|
|
||||||
fp16=False, # 是否使用16位浮点数进行训练
|
|
||||||
gradient_accumulation_steps=1, # 梯度累积步数,当batch size无法开很大时,可以考虑这个参数来实现大batch size的效果
|
|
||||||
gradient_checkpointing=False, # 当为True时,会在forward时适当丢弃一些中间量(用于backward),从而减轻显存压力(但会增加forward的时间)
|
|
||||||
label_smoothing_factor=0.0, # softlabel,等于0时表示未开启
|
|
||||||
# debug='underflow_overflow', # 训练时检查溢出,如果发生,则会发出警告。(该模式通常用于debug)
|
|
||||||
torch_compile=True, # 是否使用torch.compile来编译模型(从而获得更好的训练和推理性能)
|
|
||||||
#+ 要求torch > 2.0,并且这个功能现在还不是很稳定
|
|
||||||
# deepspeed='your_json_path', # 使用deepspeed来训练,需要指定ds_config.json的路径
|
|
||||||
#+ 在Trainer中使用Deepspeed时一定要注意ds_config.json中的配置是否与Trainer的一致(如学习率,batch size,梯度累积步数等)
|
|
||||||
#+ 如果不一致,会出现很奇怪的bug(而且一般还很难发现)
|
|
||||||
|
|
||||||
dataloader_pin_memory=True, # 可以加快数据在cpu和gpu之间转移的速度
|
|
||||||
dataloader_num_workers=16, # 默认不会使用多进程来加载数据
|
|
||||||
dataloader_drop_last=True, # 丢掉最后一个minibatch
|
|
||||||
|
|
||||||
evaluation_strategy="steps", # 评估策略,可以是"steps"或"epoch"
|
|
||||||
eval_steps=500, # if evaluation_strategy="step"
|
|
||||||
# eval_steps=10, # if evaluation_strategy="step"
|
|
||||||
|
|
||||||
save_strategy="steps", # 保存checkpoint的策略
|
|
||||||
save_steps=1500, # 模型保存的步数间隔
|
|
||||||
save_total_limit=5, # 保存的模型的最大数量。如果超过这个数量,最旧的模型将被删除
|
|
||||||
|
|
||||||
load_best_model_at_end=True, # 训练结束时是否加载最佳模型
|
|
||||||
metric_for_best_model="eval_loss", # 用于选择最佳模型的指标
|
|
||||||
greater_is_better=False, # 指标值越小越好
|
|
||||||
|
|
||||||
do_train=True, # 是否进行训练,通常用于调试
|
|
||||||
do_eval=True, # 是否进行评估,通常用于调试
|
|
||||||
|
|
||||||
remove_unused_columns=True, # 是否删除没有用到的列(特征),默认为True
|
|
||||||
#+当删除了没用到的列后,making it easier to unpack inputs into the model’s call function
|
|
||||||
|
|
||||||
push_to_hub=False, # 是否训练完后上传hub,需要先在命令行:huggingface-cli login进行登录认证的配置,配置完后,认证信息会存到cache文件夹里
|
|
||||||
hub_model_id="a_different_name", # 模型的名字
|
|
||||||
#+每次保存模型时,都会上传到hub,
|
|
||||||
#+训练完后,记得trainer.push_to_hub(),会将模型使用的参数以及验证集上的结果传到hub上
|
|
||||||
)
|
|
||||||
|
|
||||||
trainer = Trainer(
|
|
||||||
model,
|
|
||||||
training_args,
|
|
||||||
train_dataset=train_data,
|
|
||||||
eval_dataset=test_data,
|
|
||||||
)
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
os.chdir(cur_dirpath)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
train()
|
|
||||||
@@ -1 +0,0 @@
|
|||||||
from .preprocess import preprocess_fn
|
|
||||||
@@ -1,75 +0,0 @@
|
|||||||
import torch
|
|
||||||
from torchvision.transforms import v2
|
|
||||||
|
|
||||||
from PIL import Image, ImageChops
|
|
||||||
from ...globals import (
|
|
||||||
IMAGE_MEAN, IMAGE_STD,
|
|
||||||
LABEL_RATIO,
|
|
||||||
RESIZER_IMG_SIZE,
|
|
||||||
NUM_CHANNELS
|
|
||||||
)
|
|
||||||
|
|
||||||
from typing import (
|
|
||||||
Any,
|
|
||||||
List,
|
|
||||||
Dict,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def trim_white_border(image: Image):
|
|
||||||
if image.mode == 'RGB':
|
|
||||||
bg_color = (255, 255, 255)
|
|
||||||
elif image.mode == 'RGBA':
|
|
||||||
bg_color = (255, 255, 255, 255)
|
|
||||||
elif image.mode == 'L':
|
|
||||||
bg_color = 255
|
|
||||||
else:
|
|
||||||
raise ValueError("Unsupported image mode")
|
|
||||||
bg = Image.new(image.mode, image.size, bg_color)
|
|
||||||
diff = ImageChops.difference(image, bg)
|
|
||||||
diff = ImageChops.add(diff, diff, 2.0, -100)
|
|
||||||
bbox = diff.getbbox()
|
|
||||||
if bbox:
|
|
||||||
return image.crop(bbox)
|
|
||||||
|
|
||||||
|
|
||||||
def preprocess_fn(samples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
|
|
||||||
imgs = samples['pixel_values']
|
|
||||||
imgs = [trim_white_border(img) for img in imgs]
|
|
||||||
labels = [float(img.height * LABEL_RATIO) for img in imgs]
|
|
||||||
|
|
||||||
assert NUM_CHANNELS == 1, "Only support grayscale images"
|
|
||||||
transform = v2.Compose([
|
|
||||||
v2.ToImage(),
|
|
||||||
v2.ToDtype(torch.uint8, scale=True),
|
|
||||||
v2.Grayscale(),
|
|
||||||
v2.Resize(
|
|
||||||
size=RESIZER_IMG_SIZE - 1, # size必须小于max_size
|
|
||||||
interpolation=v2.InterpolationMode.BICUBIC,
|
|
||||||
max_size=RESIZER_IMG_SIZE,
|
|
||||||
antialias=True
|
|
||||||
),
|
|
||||||
v2.ToDtype(torch.float32, scale=True),
|
|
||||||
v2.Normalize(mean=[IMAGE_MEAN], std=[IMAGE_STD]),
|
|
||||||
])
|
|
||||||
imgs = transform(imgs)
|
|
||||||
imgs = [
|
|
||||||
v2.functional.pad(
|
|
||||||
img,
|
|
||||||
padding=[0, 0, RESIZER_IMG_SIZE - img.shape[2], RESIZER_IMG_SIZE - img.shape[1]]
|
|
||||||
)
|
|
||||||
for img in imgs
|
|
||||||
]
|
|
||||||
|
|
||||||
res = {'pixel_values': imgs, 'labels': labels}
|
|
||||||
return res
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__": # unit test
|
|
||||||
import datasets
|
|
||||||
data = datasets.load_dataset("/home/lhy/code/TeXify/src/models/resizer/train/dataset/dataset.py").shuffle(seed=42)
|
|
||||||
data = data.with_transform(preprocess_fn)
|
|
||||||
train_data, test_data = data['train'], data['test']
|
|
||||||
|
|
||||||
inpu = train_data[:10]
|
|
||||||
pause = 1
|
|
||||||
Reference in New Issue
Block a user