tmp commit

This commit is contained in:
三洋三洋
2024-01-31 10:20:27 +00:00
parent 1fba652766
commit ebac28a90d
2 changed files with 91 additions and 8 deletions

View File

@@ -55,7 +55,7 @@ def evaluate(model, tokenizer, eval_dataset, collate_fn):
model, model,
seq2seq_config, seq2seq_config,
eval_dataset=eval_dataset, eval_dataset=eval_dataset.select(range(100)),
tokenizer=tokenizer, tokenizer=tokenizer,
data_collator=collate_fn, data_collator=collate_fn,
compute_metrics=partial(bleu_metric, tokenizer=tokenizer) compute_metrics=partial(bleu_metric, tokenizer=tokenizer)
@@ -73,20 +73,20 @@ if __name__ == '__main__':
os.chdir(script_dirpath) os.chdir(script_dirpath)
# dataset = load_dataset(
# '/home/lhy/code/TeXify/src/models/ocr_model/train/dataset/latex-formulas/latex-formulas.py',
# 'cleaned_formulas'
# )['train']
dataset = load_dataset( dataset = load_dataset(
'/home/lhy/code/TeXify/src/models/ocr_model/train/dataset/latex-formulas/latex-formulas.py', '/home/lhy/code/TeXify/src/models/ocr_model/train/dataset/latex-formulas/latex-formulas.py',
'cleaned_formulas' 'cleaned_formulas'
)['train'].select(range(1000)) )['train']
# dataset = load_dataset(
# '/home/lhy/code/TeXify/src/models/ocr_model/train/dataset/latex-formulas/latex-formulas.py',
# 'cleaned_formulas'
# )['train'].select(range(1000))
tokenizer = TexTeller.get_tokenizer('/home/lhy/code/TeXify/src/models/tokenizer/roberta-tokenizer-550Kformulas') tokenizer = TexTeller.get_tokenizer('/home/lhy/code/TeXify/src/models/tokenizer/roberta-tokenizer-550Kformulas')
map_fn = partial(tokenize_fn, tokenizer=tokenizer) map_fn = partial(tokenize_fn, tokenizer=tokenizer)
# tokenized_dataset = dataset.map(map_fn, batched=True, remove_columns=dataset.column_names, num_proc=8, load_from_cache_file=False) tokenized_dataset = dataset.map(map_fn, batched=True, remove_columns=dataset.column_names, num_proc=8, load_from_cache_file=True)
tokenized_dataset = dataset.map(map_fn, batched=True, remove_columns=dataset.column_names, num_proc=1, load_from_cache_file=False) # tokenized_dataset = dataset.map(map_fn, batched=True, remove_columns=dataset.column_names, num_proc=1)
tokenized_dataset = tokenized_dataset.with_transform(img_transform_fn) tokenized_dataset = tokenized_dataset.with_transform(img_transform_fn)
split_dataset = tokenized_dataset.train_test_split(test_size=0.05, seed=42) split_dataset = tokenized_dataset.train_test_split(test_size=0.05, seed=42)
@@ -105,3 +105,41 @@ if __name__ == '__main__':
os.chdir(cur_path) os.chdir(cur_path)
'''
if __name__ == '__main__':
cur_path = os.getcwd()
script_dirpath = Path(__file__).resolve().parent
os.chdir(script_dirpath)
dataset = load_dataset(
'/home/lhy/code/TeXify/src/models/ocr_model/train/dataset/latex-formulas/latex-formulas.py',
'cleaned_formulas'
)['train']
pause = dataset[0]['image']
tokenizer = TexTeller.get_tokenizer('/home/lhy/code/TeXify/src/models/tokenizer/roberta-tokenizer-550Kformulas')
map_fn = partial(tokenize_fn, tokenizer=tokenizer)
tokenized_dataset = dataset.map(map_fn, batched=True, remove_columns=dataset.column_names, num_proc=8)
tokenized_dataset = tokenized_dataset.with_transform(img_preprocess)
split_dataset = tokenized_dataset.train_test_split(test_size=0.05, seed=42)
train_dataset, eval_dataset = split_dataset['train'], split_dataset['test']
collate_fn_with_tokenizer = partial(collate_fn, tokenizer=tokenizer)
# model = TexTeller()
model = TexTeller.from_pretrained('/home/lhy/code/TeXify/src/models/ocr_model/train/train_result/checkpoint-81000')
enable_train = False
enable_evaluate = True
if enable_train:
train(model, tokenizer, train_dataset, eval_dataset, collate_fn_with_tokenizer)
if enable_evaluate:
evaluate(model, tokenizer, eval_dataset, collate_fn_with_tokenizer)
os.chdir(cur_path)
'''

View File

@@ -38,6 +38,7 @@ def collate_fn(samples: List[Dict[str, Any]], tokenizer=None) -> Dict[str, List[
# 左移labels和decoder_attention_mask # 左移labels和decoder_attention_mask
batch['labels'] = left_move(batch['labels'], -100) batch['labels'] = left_move(batch['labels'], -100)
# batch['decoder_attention_mask'] = left_move(batch['decoder_attention_mask'], 0)
# 把list of Image转成一个tensor with (B, C, H, W) # 把list of Image转成一个tensor with (B, C, H, W)
batch['pixel_values'] = torch.stack(batch['pixel_values'], dim=0) batch['pixel_values'] = torch.stack(batch['pixel_values'], dim=0)
@@ -76,3 +77,47 @@ if __name__ == '__main__':
pause = 1 pause = 1
'''
def left_move(x: torch.Tensor, pad_val):
assert len(x.shape) == 2, 'x should be 2-dimensional'
lefted_x = torch.ones_like(x)
lefted_x[:, :-1] = x[:, 1:]
lefted_x[:, -1] = pad_val
return lefted_x
def tokenize_fn(samples: Dict[str, List[Any]], tokenizer=None) -> Dict[str, List[Any]]:
assert tokenizer is not None, 'tokenizer should not be None'
tokenized_formula = tokenizer(samples['latex_formula'], return_special_tokens_mask=True)
tokenized_formula['pixel_values'] = samples['image']
return tokenized_formula
def collate_fn(samples: List[Dict[str, Any]], tokenizer=None) -> Dict[str, List[Any]]:
assert tokenizer is not None, 'tokenizer should not be None'
pixel_values = [dic.pop('pixel_values') for dic in samples]
clm_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
batch = clm_collator(samples)
batch['pixel_values'] = pixel_values
batch['decoder_input_ids'] = batch.pop('input_ids')
batch['decoder_attention_mask'] = batch.pop('attention_mask')
# 左移labels和decoder_attention_mask
batch['labels'] = left_move(batch['labels'], -100)
batch['decoder_attention_mask'] = left_move(batch['decoder_attention_mask'], 0)
# 把list of Image转成一个tensor with (B, C, H, W)
batch['pixel_values'] = torch.stack(batch['pixel_values'], dim=0)
return batch
def img_preprocess(samples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
processed_img = train_transform(samples['pixel_values'])
samples['pixel_values'] = processed_img
return samples
'''