Initial commit

This commit is contained in:
三洋三洋
2024-02-11 08:06:50 +00:00
commit f057490bdb
56 changed files with 815 additions and 0 deletions

11
src/client_demo.py Normal file
View File

@@ -0,0 +1,11 @@
import requests
url = "http://127.0.0.1:8000/predict"
img_path = "/your/image/path/"
data = {"img_path": img_path}
response = requests.post(url, json=data)
print(response.text)

36
src/inference.py Normal file
View File

@@ -0,0 +1,36 @@
import os
import argparse
from pathlib import Path
from models.ocr_model.utils.inference import inference
from models.ocr_model.model.TexTeller import TexTeller
if __name__ == '__main__':
os.chdir(Path(__file__).resolve().parent)
parser = argparse.ArgumentParser()
parser.add_argument(
'-img',
type=str,
required=True,
help='path to the input image'
)
parser.add_argument(
'-cuda',
default=False,
action='store_true',
help='use cuda or not'
)
args = parser.parse_args()
# You can use your own checkpoint and tokenizer path.
print('Loading model and tokenizer...')
model = TexTeller.from_pretrained()
tokenizer = TexTeller.get_tokenizer()
print('Model and tokenizer loaded.')
img_path = [args.img]
print('Inference...')
res = inference(model, tokenizer, img_path, args.cuda)
print(res[0])

26
src/models/globals.py Normal file
View File

@@ -0,0 +1,26 @@
# Formula image(grayscale) mean and variance
IMAGE_MEAN = 0.9545467
IMAGE_STD = 0.15394445
# Density value for pdf to image conversion
TEXTELL_DENSITY = 200
# Vocabulary size for TexTeller
VOCAB_SIZE = 10000
# Fixed size for input image for TexTeller
FIXED_IMG_SIZE = 448
# Image channel for TexTeller
IMG_CHANNELS = 1 # grayscale image
# Max size of token for embedding
MAX_TOKEN_SIZE = 512
# Scaling ratio for random resizing when training
MAX_RESIZE_RATIO = 1.15
MIN_RESIZE_RATIO = 0.75
# Minimum height and width for input image for TexTeller
MIN_HEIGHT = 12
MIN_WIDTH = 30

View File

@@ -0,0 +1,43 @@
from pathlib import Path
from models.globals import (
VOCAB_SIZE,
FIXED_IMG_SIZE,
IMG_CHANNELS,
)
from transformers import (
ViTConfig,
ViTModel,
TrOCRConfig,
TrOCRForCausalLM,
RobertaTokenizerFast,
VisionEncoderDecoderModel,
)
class TexTeller(VisionEncoderDecoderModel):
REPO_NAME = 'OleehyO/TexTeller'
def __init__(self, decoder_path=None, tokenizer_path=None):
encoder = ViTModel(ViTConfig(
image_size=FIXED_IMG_SIZE,
num_channels=IMG_CHANNELS
))
decoder = TrOCRForCausalLM(TrOCRConfig(
vocab_size=VOCAB_SIZE,
))
super().__init__(encoder=encoder, decoder=decoder)
@classmethod
def from_pretrained(cls, model_path: str = None):
if model_path is None or model_path == cls.REPO_NAME:
return VisionEncoderDecoderModel.from_pretrained(cls.REPO_NAME)
model_path = Path(model_path).resolve()
return VisionEncoderDecoderModel.from_pretrained(str(model_path))
@classmethod
def get_tokenizer(cls, tokenizer_path: str = None) -> RobertaTokenizerFast:
if tokenizer_path is None or tokenizer_path == cls.REPO_NAME:
return RobertaTokenizerFast.from_pretrained(cls.REPO_NAME)
tokenizer_path = Path(tokenizer_path).resolve()
return RobertaTokenizerFast.from_pretrained(str(tokenizer_path))

View File

@@ -0,0 +1,35 @@
{"img_name": "0.png", "formula": "\\[\\mathbb{C}^{4}\\stackrel{{\\pi_{1}}}{{\\longleftarrow}}\\mathcal{ F}\\stackrel{{\\pi_{2}}}{{\\rightarrow}}\\mathcal{PT},\\]"}
{"img_name": "1.png", "formula": "\\[W^{*}_{Z}(x_{1},x_{2})=W_{f\\lrcorner Z}(y_{1},y_{2})=\\mathcal{P}\\exp\\left( \\int_{\\gamma}A_{\\mu}dx^{\\mu}\\right).\\]"}
{"img_name": "2.png", "formula": "\\[G=W^{*}_{Z}(q,p)=\\tilde{H}H^{-1}\\]"}
{"img_name": "3.png", "formula": "\\[H=W^{*}_{Z}(p,x),\\ \\ \\tilde{H}=W^{*}_{Z}(q,x).\\]"}
{"img_name": "4.png", "formula": "\\[v\\cdot f^{*}A|_{x}=(f\\lrcorner Z)_{*}v\\cdot A|_{f\\lrcorner Z(x)},\\quad x\\in Z, \\ v\\in T_{x}Z.\\]"}
{"img_name": "5.png", "formula": "\\[(f\\lrcorner Z)_{*}v\\cdot A|_{f\\lrcorner Z(x)}=v^{\\alpha\\dot{\\alpha}}\\Big{(} \\frac{\\partial y^{\\beta\\dot{\\beta}}}{\\partial x^{\\alpha\\dot{\\alpha}}}A_{\\beta \\dot{\\beta}}\\Big{)}\\Big{|}_{f\\lrcorner Z(x)},\\ x\\in Z,\\ v\\in T_{x}Z,\\]"}
{"img_name": "6.png", "formula": "\\[\\{T_{i},T_{j}\\}=\\{\\tilde{T}^{i},\\tilde{T}^{j}\\}=0,\\ \\ \\{T_{i},\\tilde{T}^{j}\\}=2i \\delta^{j}_{i}D,\\]"}
{"img_name": "7.png", "formula": "\\[(\\partial_{s},q_{i},\\tilde{q}^{k})\\rightarrow(D,M^{j}_{i}T_{j},\\tilde{M}^{k}_ {l}\\tilde{T}^{l}),\\]"}
{"img_name": "8.png", "formula": "\\[M^{i}_{j}\\tilde{M}^{j}_{k}=\\delta^{i}_{k}.\\]"}
{"img_name": "9.png", "formula": "\\[Q_{i\\alpha}=q_{i\\alpha}+\\omega_{i\\alpha},\\ \\tilde{Q}^{i}_{\\dot{\\alpha}}=q^{i}_{ \\dot{\\alpha}}+\\tilde{\\omega}^{i}_{\\dot{\\alpha}},\\ D_{\\alpha\\dot{\\alpha}}= \\partial_{\\alpha\\dot{\\alpha}}+A_{\\alpha\\dot{\\alpha}}.\\]"}
{"img_name": "10.png", "formula": "\\[\\hat{f}(g,\\theta^{i\\alpha},\\tilde{\\theta}^{\\dot{\\alpha}}_{j})=(f(g),[V^{-1}]^ {\\alpha}_{\\beta}\\theta^{i\\beta},[\\tilde{V}^{-1}]^{\\dot{\\alpha}}_{\\dot{\\beta}} \\tilde{\\theta}^{\\dot{\\beta}}_{j}),\\ g\\in{\\cal G},\\]"}
{"img_name": "11.png", "formula": "\\[v^{\\beta\\dot{\\beta}}V^{\\alpha}_{\\beta}\\tilde{V}^{\\dot{\\alpha}}_{\\dot{\\beta}} =((f\\lrcorner L_{0})_{*}v)^{\\alpha\\dot{\\alpha}},\\]"}
{"img_name": "12.png", "formula": "\\[\\omega_{i\\alpha}=\\tilde{\\theta}^{\\dot{\\alpha}}_{i}h_{\\alpha\\dot{\\alpha}}(x^{ \\beta\\dot{\\beta}},\\tau^{\\beta\\dot{\\beta}}),\\ \\ \\tilde{\\omega}^{i}_{\\alpha}=\\theta^{i\\alpha}\\tilde{h}_{\\alpha\\dot{\\alpha}}(x^{ \\beta\\dot{\\beta}},\\tau^{\\beta\\dot{\\beta}}),\\]"}
{"img_name": "13.png", "formula": "\\[\\begin{split}&\\lambda^{\\alpha}\\hat{f}^{*}\\omega_{i\\alpha}(z)= \\tilde{\\theta}^{\\dot{\\beta}}_{i}\\lambda^{\\alpha}\\left(V^{\\beta}_{\\alpha}h_{ \\beta\\dot{\\beta}}(x^{\\prime},\\tau^{\\prime})\\right),\\\\ &\\tilde{\\lambda}^{\\dot{\\alpha}}\\hat{f}^{*}\\tilde{\\omega}^{i}_{ \\dot{\\alpha}}(z)=\\theta^{i\\beta}\\tilde{\\lambda}^{\\dot{\\alpha}}\\left(\\tilde{V}^ {\\dot{\\beta}}_{\\dot{\\alpha}}\\tilde{h}_{\\beta\\dot{\\beta}}(x^{\\prime},\\tau^{ \\prime})\\right),\\end{split}\\]"}
{"img_name": "14.png", "formula": "\\[A_{\\alpha\\dot{\\alpha}}=A_{\\alpha\\dot{\\alpha}}(x^{\\beta\\dot{\\beta}},\\tau^{ \\beta\\dot{\\beta}})\\]"}
{"img_name": "15.png", "formula": "\\[D=\\lambda^{\\alpha}\\tilde{\\lambda}^{\\dot{\\alpha}}D_{\\alpha\\dot{\\alpha}}\\]"}
{"img_name": "16.png", "formula": "\\[D=\\lambda^{\\alpha}\\tilde{\\lambda}^{\\dot{\\alpha}}\\partial_{\\alpha\\dot{\\alpha}}\\]"}
{"img_name": "17.png", "formula": "\\[[v_{1}\\cdot D^{*},v_{2}\\cdot D^{*}]=0\\]"}
{"img_name": "18.png", "formula": "\\[\\Phi_{A}=(\\omega_{i\\alpha},\\tilde{\\omega}^{i}_{\\dot{\\alpha}},A_{\\alpha\\dot{ \\alpha}})\\]"}
{"img_name": "19.png", "formula": "\\[\\hat{f}:{\\cal F}^{6|4N}\\rightarrow{\\cal F}^{6|4N}\\]"}
{"img_name": "20.png", "formula": "\\[\\sigma=(s,\\xi^{i},\\tilde{\\xi}_{j})\\in\\mathbb{C}^{1|2N}\\]"}
{"img_name": "21.png", "formula": "\\[\\tau^{\\alpha\\dot{\\alpha}}(h_{\\alpha\\dot{\\alpha}}+\\tilde{h}_{\\alpha\\dot{\\alpha} })=0\\]"}
{"img_name": "22.png", "formula": "\\[\\tau^{\\alpha\\dot{\\alpha}}\\rightarrow[V^{-1}]^{\\alpha}_{\\beta}[\\tilde{V}^{-1}]^{ \\dot{\\alpha}}_{\\dot{\\beta}}\\tau^{\\beta\\dot{\\beta}}\\]"}
{"img_name": "23.png", "formula": "\\[\\tau^{\\beta\\dot{\\beta}}=\\sum_{i}\\theta^{i\\beta}\\tilde{\\theta}^{\\dot{\\beta}}_{i}\\]"}
{"img_name": "24.png", "formula": "\\[\\theta^{i\\alpha}\\omega_{i\\alpha}+\\tilde{\\theta}^{i}_{\\dot{\\alpha}}\\tilde{ \\omega}^{\\dot{\\alpha}}_{i}=0\\]"}
{"img_name": "25.png", "formula": "\\[\\tilde{T}^{i}=\\tilde{\\lambda}^{\\dot{\\alpha}}\\tilde{Q}^{i}_{\\dot{\\alpha}}\\]"}
{"img_name": "26.png", "formula": "\\[\\tilde{T}^{i}=\\tilde{\\lambda}^{\\dot{\\alpha}}\\tilde{q}^{i}_{\\dot{\\alpha}}\\]"}
{"img_name": "27.png", "formula": "\\[\\tilde{\\lambda}^{\\dot{\\alpha}}f^{*}A_{\\alpha\\dot{\\alpha}}=H^{-1}\\tilde{ \\lambda}^{\\dot{\\alpha}}\\partial_{\\alpha\\dot{\\alpha}}H\\]"}
{"img_name": "28.png", "formula": "\\[\\tilde{q}^{i}=\\partial_{\\tilde{\\xi}_{i}}+i\\xi^{i}\\partial_{s}\\]"}
{"img_name": "29.png", "formula": "\\[\\tilde{q}^{i}_{\\dot{\\alpha}}=\\frac{\\partial}{\\partial\\tilde{\\theta}^{\\dot{ \\alpha}}_{i}}+i\\theta^{i\\alpha}\\frac{\\partial}{\\partial x^{\\alpha\\dot{\\alpha}}}\\]"}
{"img_name": "30.png", "formula": "\\[f\\lrcorner L(z)=\\pi_{1}\\circ f(z,\\lambda,\\tilde{\\lambda})\\ \\forall z\\in L\\]"}
{"img_name": "31.png", "formula": "\\[q_{i\\alpha}=\\frac{\\partial}{\\partial\\theta^{i\\alpha}}+i\\tilde{\\theta}^{\\dot{ \\alpha}}_{i}\\frac{\\partial}{\\partial x^{\\alpha\\dot{\\alpha}}}\\]"}
{"img_name": "32.png", "formula": "\\[q_{i}=\\partial_{\\xi^{i}}+i\\tilde{\\xi}_{i}\\partial_{s}\\]"}
{"img_name": "33.png", "formula": "\\[v^{\\alpha\\dot{\\alpha}}=\\lambda^{\\alpha}\\tilde{\\lambda}^{\\dot{\\alpha}}\\]"}
{"img_name": "34.png", "formula": "\\[z^{A}=(x^{\\alpha\\dot{\\alpha}},\\theta^{i\\alpha},\\tilde{\\theta}^{\\dot{\\alpha}}_{ j})\\]"}

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.2 KiB

View File

@@ -0,0 +1,50 @@
from PIL import Image
from pathlib import Path
import datasets
import json
DIR_URL = Path('absolute/path/to/dataset/directory')
# e.g. DIR_URL = Path('/home/OleehyO/TeXTeller/src/models/ocr_model/train/dataset')
class LatexFormulas(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = []
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features({
"image": datasets.Image(),
"latex_formula": datasets.Value("string")
})
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
dir_path = Path(dl_manager.download(str(DIR_URL)))
assert dir_path.is_dir()
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
'dir_path': dir_path,
}
)
]
def _generate_examples(self, dir_path: Path):
images_path = dir_path / 'images'
formulas_path = dir_path / 'formulas.jsonl'
img2formula = {}
with formulas_path.open('r', encoding='utf-8') as f:
for line in f:
single_json = json.loads(line)
img2formula[single_json['img_name']] = single_json['formula']
for img_path in images_path.iterdir():
if img_path.suffix not in ['.jpg', '.png']:
continue
yield str(img_path), {
"image": Image.open(img_path),
"latex_formula": img2formula[img_path.name]
}

View File

@@ -0,0 +1,103 @@
import os
from functools import partial
from pathlib import Path
from datasets import load_dataset
from transformers import (
Trainer,
TrainingArguments,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
GenerationConfig
)
from .training_args import CONFIG
from ..model.TexTeller import TexTeller
from ..utils.functional import tokenize_fn, collate_fn, img_transform_fn
from ..utils.metrics import bleu_metric
from ...globals import MAX_TOKEN_SIZE, MIN_WIDTH, MIN_HEIGHT
def train(model, tokenizer, train_dataset, eval_dataset, collate_fn_with_tokenizer):
training_args = TrainingArguments(**CONFIG)
trainer = Trainer(
model,
training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
data_collator=collate_fn_with_tokenizer,
)
trainer.train(resume_from_checkpoint=None)
def evaluate(model, tokenizer, eval_dataset, collate_fn):
eval_config = CONFIG.copy()
eval_config['predict_with_generate'] = True
generate_config = GenerationConfig(
max_new_tokens=MAX_TOKEN_SIZE,
num_beams=1,
do_sample=False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
)
eval_config['generation_config'] = generate_config
seq2seq_config = Seq2SeqTrainingArguments(**eval_config)
trainer = Seq2SeqTrainer(
model,
seq2seq_config,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
data_collator=collate_fn,
compute_metrics=partial(bleu_metric, tokenizer=tokenizer)
)
eval_res = trainer.evaluate()
print(eval_res)
if __name__ == '__main__':
script_dirpath = Path(__file__).resolve().parent
os.chdir(script_dirpath)
dataset = load_dataset(str(Path('./dataset/loader.py').resolve()))['train']
dataset = dataset.filter(lambda x: x['image'].height > MIN_HEIGHT and x['image'].width > MIN_WIDTH)
dataset = dataset.shuffle(seed=42)
dataset = dataset.flatten_indices()
tokenizer = TexTeller.get_tokenizer()
# If you want use your own tokenizer, please modify the path to your tokenizer
#+tokenizer = TexTeller.get_tokenizer('/path/to/your/tokenizer')
map_fn = partial(tokenize_fn, tokenizer=tokenizer)
tokenized_dataset = dataset.map(map_fn, batched=True, remove_columns=dataset.column_names, num_proc=8)
tokenized_dataset = tokenized_dataset.with_transform(img_transform_fn)
# Split dataset into train and eval, ratio 9:1
split_dataset = tokenized_dataset.train_test_split(test_size=0.1, seed=42)
train_dataset, eval_dataset = split_dataset['train'], split_dataset['test']
collate_fn_with_tokenizer = partial(collate_fn, tokenizer=tokenizer)
# Train from scratch
model = TexTeller()
# or train from TexTeller pre-trained model: model = TexTeller.from_pretrained()
# If you want to train from pre-trained model, please modify the path to your pre-trained checkpoint
#+e.g.
#+model = TexTeller.from_pretrained(
#+ '/path/to/your/model_checkpoint'
#+)
enable_train = True
enable_evaluate = True
if enable_train:
train(model, tokenizer, train_dataset, eval_dataset, collate_fn_with_tokenizer)
if enable_evaluate and len(eval_dataset) > 0:
evaluate(model, tokenizer, eval_dataset, collate_fn_with_tokenizer)

View File

@@ -0,0 +1,38 @@
CONFIG = {
"seed": 42, # Random seed for reproducibility
"use_cpu": False, # Whether to use CPU (it's easier to debug with CPU when starting to test the code)
"learning_rate": 5e-5, # Learning rate
"num_train_epochs": 10, # Total number of training epochs
"per_device_train_batch_size": 4, # Batch size per GPU for training
"per_device_eval_batch_size": 8, # Batch size per GPU for evaluation
"output_dir": "train_result", # Output directory
"overwrite_output_dir": False, # If the output directory exists, do not delete its content
"report_to": ["tensorboard"], # Report logs to TensorBoard
"save_strategy": "steps", # Strategy to save checkpoints
"save_steps": 500, # Interval of steps to save checkpoints, can be int or a float (0~1), when float it represents the ratio of total training steps (e.g., can set to 1.0 / 2000)
"save_total_limit": 5, # Maximum number of models to save. The oldest models will be deleted if this number is exceeded
"logging_strategy": "steps", # Log every certain number of steps
"logging_steps": 500, # Number of steps between each log
"logging_nan_inf_filter": False, # Record logs for loss=nan or inf
"optim": "adamw_torch", # Optimizer
"lr_scheduler_type": "cosine", # Learning rate scheduler
"warmup_ratio": 0.1, # Ratio of warmup steps in total training steps (e.g., for 1000 steps, the first 100 steps gradually increase lr from 0 to the set lr)
"max_grad_norm": 1.0, # For gradient clipping, ensure the norm of the gradients does not exceed 1.0 (default 1.0)
"fp16": False, # Whether to use 16-bit floating point for training (generally not recommended, as loss can easily explode)
"bf16": False, # Whether to use Brain Floating Point (bfloat16) for training (recommended if architecture supports it)
"gradient_accumulation_steps": 1, # Gradient accumulation steps, consider this parameter to achieve large batch size effects when batch size cannot be large
"jit_mode_eval": False, # Whether to use PyTorch jit trace during eval (can speed up the model, but the model must be static, otherwise will throw errors)
"torch_compile": False, # Whether to use torch.compile to compile the model (for better training and inference performance)
"dataloader_pin_memory": True, # Can speed up data transfer between CPU and GPU
"dataloader_num_workers": 1, # Default is not to use multiprocessing for data loading, usually set to 4*number of GPUs used
"evaluation_strategy": "steps", # Evaluation strategy, can be "steps" or "epoch"
"eval_steps": 500, # If evaluation_strategy="step"
"remove_unused_columns": False, # Don't change this unless you really know what you are doing.
}

View File

@@ -0,0 +1,46 @@
import torch
import numpy as np
from transformers import DataCollatorForLanguageModeling
from typing import List, Dict, Any
from .transforms import train_transform
def left_move(x: torch.Tensor, pad_val):
assert len(x.shape) == 2, 'x should be 2-dimensional'
lefted_x = torch.ones_like(x)
lefted_x[:, :-1] = x[:, 1:]
lefted_x[:, -1] = pad_val
return lefted_x
def tokenize_fn(samples: Dict[str, List[Any]], tokenizer=None) -> Dict[str, List[Any]]:
assert tokenizer is not None, 'tokenizer should not be None'
tokenized_formula = tokenizer(samples['latex_formula'], return_special_tokens_mask=True)
tokenized_formula['pixel_values'] = samples['image']
return tokenized_formula
def collate_fn(samples: List[Dict[str, Any]], tokenizer=None) -> Dict[str, List[Any]]:
assert tokenizer is not None, 'tokenizer should not be None'
pixel_values = [dic.pop('pixel_values') for dic in samples]
clm_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
batch = clm_collator(samples)
batch['pixel_values'] = pixel_values
batch['decoder_input_ids'] = batch.pop('input_ids')
batch['decoder_attention_mask'] = batch.pop('attention_mask')
# left shift labels and decoder_attention_mask, padding with -100
batch['labels'] = left_move(batch['labels'], -100)
# convert list of Image to tensor with (B, C, H, W)
batch['pixel_values'] = torch.stack(batch['pixel_values'], dim=0)
return batch
def img_transform_fn(samples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
processed_img = train_transform(samples['pixel_values'])
samples['pixel_values'] = processed_img
return samples

View File

@@ -0,0 +1,26 @@
import cv2
import numpy as np
from typing import List
def convert2rgb(image_paths: List[str]) -> List[np.ndarray]:
processed_images = []
for path in image_paths:
image = cv2.imread(path, cv2.IMREAD_UNCHANGED)
if image is None:
print(f"Image at {path} could not be read.")
continue
if image.dtype == np.uint16:
print(f'Converting {path} to 8-bit, image may be lossy.')
image = cv2.convertScaleAbs(image, alpha=(255.0/65535.0))
channels = 1 if len(image.shape) == 2 else image.shape[2]
if channels == 4:
image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGB)
elif channels == 1:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
elif channels == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
processed_images.append(image)
return processed_images

View File

@@ -0,0 +1,38 @@
import torch
from transformers import RobertaTokenizerFast, GenerationConfig
from typing import List
from models.ocr_model.model.TexTeller import TexTeller
from models.ocr_model.utils.transforms import inference_transform
from models.ocr_model.utils.helpers import convert2rgb
from models.globals import MAX_TOKEN_SIZE
def inference(
model: TexTeller,
tokenizer: RobertaTokenizerFast,
imgs_path: List[str],
use_cuda: bool,
num_beams: int = 1,
) -> List[str]:
model.eval()
imgs = convert2rgb(imgs_path)
imgs = inference_transform(imgs)
pixel_values = torch.stack(imgs)
if use_cuda:
model = model.to('cuda')
pixel_values = pixel_values.to('cuda')
generate_config = GenerationConfig(
max_new_tokens=MAX_TOKEN_SIZE,
num_beams=num_beams,
do_sample=False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
)
pred = model.generate(pixel_values, generation_config=generate_config)
res = tokenizer.batch_decode(pred, skip_special_tokens=True)
return res

View File

@@ -0,0 +1,23 @@
import evaluate
import numpy as np
import os
from pathlib import Path
from typing import Dict
from transformers import EvalPrediction, RobertaTokenizer
def bleu_metric(eval_preds: EvalPrediction, tokenizer: RobertaTokenizer) -> Dict:
cur_dir = Path(os.getcwd())
os.chdir(Path(__file__).resolve().parent)
metric = evaluate.load('google_bleu') # Will download the metric from huggingface if not already downloaded
os.chdir(cur_dir)
logits, labels = eval_preds.predictions, eval_preds.label_ids
preds = logits
labels = np.where(labels == -100, 1, labels)
preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
return metric.compute(predictions=preds, references=labels)

View File

@@ -0,0 +1,90 @@
import torch
import random
import numpy as np
import cv2
from torchvision.transforms import v2
from typing import List
from PIL import Image
from models.globals import (
FIXED_IMG_SIZE,
IMAGE_MEAN, IMAGE_STD,
MAX_RESIZE_RATIO, MIN_RESIZE_RATIO
)
general_transform_pipeline = v2.Compose([
v2.ToImage(),
v2.ToDtype(torch.uint8, scale=True),
v2.Grayscale(),
v2.Resize(
size=FIXED_IMG_SIZE - 1,
interpolation=v2.InterpolationMode.BICUBIC,
max_size=FIXED_IMG_SIZE,
antialias=True
),
v2.ToDtype(torch.float32, scale=True),
v2.Normalize(mean=[IMAGE_MEAN], std=[IMAGE_STD]),
])
def trim_white_border(image: np.ndarray):
if len(image.shape) != 3 or image.shape[2] != 3:
raise ValueError("Image is not in RGB format or channel is not in third dimension")
if image.dtype != np.uint8:
raise ValueError(f"Image should stored in uint8")
h, w = image.shape[:2]
bg = np.full((h, w, 3), 255, dtype=np.uint8)
diff = cv2.absdiff(image, bg)
_, diff = cv2.threshold(diff, 1, 255, cv2.THRESH_BINARY)
gray_diff = cv2.cvtColor(diff, cv2.COLOR_RGB2GRAY)
x, y, w, h = cv2.boundingRect(gray_diff)
trimmed_image = image[y:y+h, x:x+w]
return trimmed_image
def padding(images: List[torch.Tensor], required_size: int):
images = [
v2.functional.pad(
img,
padding=[0, 0, required_size - img.shape[2], required_size - img.shape[1]]
)
for img in images
]
return images
def random_resize(
images: List[np.ndarray],
minr: float,
maxr: float
) -> List[np.ndarray]:
if len(images[0].shape) != 3 or images[0].shape[2] != 3:
raise ValueError("Image is not in RGB format or channel is not in third dimension")
ratios = [random.uniform(minr, maxr) for _ in range(len(images))]
return [
cv2.resize(img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LANCZOS4) # 抗锯齿
for img, r in zip(images, ratios)
]
def general_transform(images: List[np.ndarray]) -> List[torch.Tensor]:
images = [trim_white_border(image) for image in images]
images = general_transform_pipeline(images)
images = padding(images, FIXED_IMG_SIZE)
return images
def train_transform(images: List[Image.Image]) -> List[torch.Tensor]:
images = [np.array(img.convert('RGB')) for img in images]
images = random_resize(images, MIN_RESIZE_RATIO, MAX_RESIZE_RATIO)
return general_transform(images)
def inference_transform(images: List[np.ndarray]) -> List[torch.Tensor]:
return general_transform(images)

View File

@@ -0,0 +1,25 @@
import os
from pathlib import Path
from datasets import load_dataset
from ..ocr_model.model.TexTeller import TexTeller
from ..globals import VOCAB_SIZE
if __name__ == '__main__':
script_dirpath = Path(__file__).resolve().parent
os.chdir(script_dirpath)
tokenizer = TexTeller.get_tokenizer()
# Don't forget to config your dataset path in loader.py
dataset = load_dataset('../ocr_model/train/dataset/loader.py')['train']
new_tokenizer = tokenizer.train_new_from_iterator(
text_iterator=dataset['latex_formula'],
# If you want to use a different vocab size, **change VOCAB_SIZE from globals.py**
vocab_size=VOCAB_SIZE
)
# Save the new tokenizer for later training and inference
new_tokenizer.save_pretrained('./your_dir_name')

81
src/server.py Normal file
View File

@@ -0,0 +1,81 @@
import argparse
import time
from starlette.requests import Request
from ray import serve
from ray.serve.handle import DeploymentHandle
from models.ocr_model.utils.inference import inference
from models.ocr_model.model.TexTeller import TexTeller
parser = argparse.ArgumentParser()
parser.add_argument(
'-ckpt', '--checkpoint_dir', type=str
)
parser.add_argument(
'-tknz', '--tokenizer_dir', type=str
)
parser.add_argument('-port', '--server_port', type=int, default=8000)
parser.add_argument('--num_replicas', type=int, default=1)
parser.add_argument('--ncpu_per_replica', type=float, default=1.0)
parser.add_argument('--ngpu_per_replica', type=float, default=0.0)
parser.add_argument('--use_cuda', action='store_true', default=False)
parser.add_argument('--num_beam', type=int, default=1)
args = parser.parse_args()
if args.ngpu_per_replica > 0 and not args.use_cuda:
raise ValueError("use_cuda must be True if ngpu_per_replica > 0")
@serve.deployment(
num_replicas=args.num_replicas,
ray_actor_options={
"num_cpus": args.ncpu_per_replica,
"num_gpus": args.ngpu_per_replica
}
)
class TexTellerServer:
def __init__(
self,
checkpoint_path: str,
tokenizer_path: str,
use_cuda: bool = False,
num_beam: int = 1
) -> None:
self.model = TexTeller.from_pretrained(checkpoint_path)
self.tokenizer = TexTeller.get_tokenizer(tokenizer_path)
self.use_cuda = use_cuda
self.num_beam = num_beam
self.model = self.model.to('cuda') if use_cuda else self.model
def predict(self, image_path: str) -> str:
return inference(self.model, self.tokenizer, [image_path], self.use_cuda, self.num_beam)[0]
@serve.deployment()
class Ingress:
def __init__(self, texteller_server: DeploymentHandle) -> None:
self.texteller_server = texteller_server
async def __call__(self, request: Request) -> str:
msg = await request.json()
img_path: str = msg['img_path']
pred = await self.texteller_server.predict.remote(img_path)
return pred
if __name__ == '__main__':
ckpt_dir = args.checkpoint_dir
tknz_dir = args.tokenizer_dir
serve.start(http_options={"port": args.server_port})
texteller_server = TexTellerServer.bind(ckpt_dir, tknz_dir, use_cuda=args.use_cuda, num_beam=args.num_beam)
ingress = Ingress.bind(texteller_server)
ingress_handle = serve.run(ingress, route_prefix="/predict")
while True:
time.sleep(1)

9
src/start_web.sh Executable file
View File

@@ -0,0 +1,9 @@
#!/usr/bin/env bash
set -exu
export CHECKPOINT_DIR="OleehyO/TexTeller"
export TOKENIZER_DIR="OleehyO/TexTeller"
export USE_CUDA=False # True or False (case-sensitive)
export NUM_BEAM=1
streamlit run web.py

93
src/web.py Normal file
View File

@@ -0,0 +1,93 @@
import os
import io
import base64
import tempfile
import streamlit as st
from PIL import Image
from models.ocr_model.utils.inference import inference
from models.ocr_model.model.TexTeller import TexTeller
@st.cache_resource
def get_model():
return TexTeller.from_pretrained(os.environ['CHECKPOINT_DIR'])
@st.cache_resource
def get_tokenizer():
return TexTeller.get_tokenizer(os.environ['TOKENIZER_DIR'])
model = get_model()
tokenizer = get_tokenizer()
# ============================ pages =============================== #
html_string = '''
<h1 style="color: orange; text-align: center;">
✨ TexTeller ✨
</h1>
'''
st.markdown(html_string, unsafe_allow_html=True)
if "start" not in st.session_state:
st.balloons()
st.session_state["start"] = 1
uploaded_file = st.file_uploader("",type=['jpg', 'png'])
if uploaded_file:
img = Image.open(uploaded_file)
temp_dir = tempfile.mkdtemp()
png_file_path = os.path.join(temp_dir, 'image.png')
img.save(png_file_path, 'PNG')
def get_image_base64(img_file):
buffered = io.BytesIO()
img_file.seek(0)
img = Image.open(img_file)
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
img_base64 = get_image_base64(uploaded_file)
st.markdown(f"""
<style>
.centered-container {{
text-align: center;
}}
.centered-image {{
display: block;
margin-left: auto;
margin-right: auto;
max-width: 700px;
}}
</style>
<div class="centered-container">
<img src="data:image/png;base64,{img_base64}" class="centered-image" alt="Input image">
<p style="color:gray;">Input image ({img.height}✖️{img.width})</p>
</div>
""", unsafe_allow_html=True)
st.write("")
st.write("")
with st.spinner("Predicting..."):
uploaded_file.seek(0)
TeXTeller_result = inference(
model,
tokenizer,
[png_file_path],
True if os.environ['USE_CUDA'] == 'True' else False,
int(os.environ['NUM_BEAM'])
)[0]
# st.subheader(':rainbow[Predict] :sunglasses:', divider='rainbow')
st.subheader(':sunglasses:', divider='gray')
st.latex(TeXTeller_result)
st.code(TeXTeller_result, language='latex')
st.success('Done!')
# ============================ pages =============================== #