Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 6813f3d4f7 | |||
| ba0968b2da | |||
|
|
9b88cec77b | ||
|
|
154c8fcab5 |
57
.dockerignore
Normal file
57
.dockerignore
Normal file
@@ -0,0 +1,57 @@
|
|||||||
|
# Python
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
*.so
|
||||||
|
.Python
|
||||||
|
*.egg-info/
|
||||||
|
dist/
|
||||||
|
build/
|
||||||
|
*.egg
|
||||||
|
|
||||||
|
# Virtual environments
|
||||||
|
venv/
|
||||||
|
env/
|
||||||
|
ENV/
|
||||||
|
.venv
|
||||||
|
|
||||||
|
# IDEs
|
||||||
|
.vscode/
|
||||||
|
.idea/
|
||||||
|
*.swp
|
||||||
|
*.swo
|
||||||
|
*~
|
||||||
|
|
||||||
|
# Git
|
||||||
|
.git/
|
||||||
|
.gitignore
|
||||||
|
|
||||||
|
# Testing
|
||||||
|
.pytest_cache/
|
||||||
|
.coverage
|
||||||
|
htmlcov/
|
||||||
|
|
||||||
|
# Documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# OS
|
||||||
|
.DS_Store
|
||||||
|
Thumbs.db
|
||||||
|
|
||||||
|
# Cache
|
||||||
|
.cache/
|
||||||
|
*.log
|
||||||
|
|
||||||
|
# Jupyter
|
||||||
|
.ipynb_checkpoints/
|
||||||
|
|
||||||
|
# Model files (will be mounted from host)
|
||||||
|
models/
|
||||||
|
*.pth
|
||||||
|
*.onnx
|
||||||
|
|
||||||
|
examples/
|
||||||
|
assets/
|
||||||
|
docs/
|
||||||
|
tests/
|
||||||
|
README.docker.md
|
||||||
69
Dockerfile
Normal file
69
Dockerfile
Normal file
@@ -0,0 +1,69 @@
|
|||||||
|
# Use NVIDIA CUDA base image with Python 3.12 (CUDA 12.8 for RTX 5080)
|
||||||
|
FROM nvidia/cuda:12.8.0-base-ubuntu24.04
|
||||||
|
|
||||||
|
# Set environment variables
|
||||||
|
ENV DEBIAN_FRONTEND=noninteractive \
|
||||||
|
PYTHONUNBUFFERED=1 \
|
||||||
|
PYTHONDONTWRITEBYTECODE=1 \
|
||||||
|
PIP_NO_CACHE_DIR=1 \
|
||||||
|
CUDA_VISIBLE_DEVICES=0
|
||||||
|
|
||||||
|
# Configure apt to use Tsinghua mirror (清华源)
|
||||||
|
RUN sed -i 's@//archive.ubuntu.com@//mirrors.tuna.tsinghua.edu.cn@g' /etc/apt/sources.list.d/ubuntu.sources && \
|
||||||
|
sed -i 's@//security.ubuntu.com@//mirrors.tuna.tsinghua.edu.cn@g' /etc/apt/sources.list.d/ubuntu.sources
|
||||||
|
|
||||||
|
# Install Python and system dependencies (Ubuntu 24.04 uses Python 3.12)
|
||||||
|
RUN apt-get update && apt-get install -y \
|
||||||
|
python3 \
|
||||||
|
python3-pip \
|
||||||
|
python3-venv \
|
||||||
|
git \
|
||||||
|
libglib2.0-0 \
|
||||||
|
libsm6 \
|
||||||
|
libxext6 \
|
||||||
|
libxrender-dev \
|
||||||
|
libgomp1 \
|
||||||
|
wget \
|
||||||
|
&& rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
|
# Create symlink for python command
|
||||||
|
RUN ln -sf /usr/bin/python3 /usr/bin/python
|
||||||
|
|
||||||
|
# Configure pip to use Tsinghua mirror (清华源) and allow system-wide installs
|
||||||
|
RUN python3 -m pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple && \
|
||||||
|
python3 -m pip config set global.break-system-packages true
|
||||||
|
|
||||||
|
# Upgrade pip (ignore system-installed packages)
|
||||||
|
RUN pip install --upgrade --ignore-installed pip setuptools wheel
|
||||||
|
|
||||||
|
# Set working directory
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
# Copy project files
|
||||||
|
COPY . /app/
|
||||||
|
|
||||||
|
# Install PyTorch with CUDA support first (cu124 is compatible with CUDA 12.8)
|
||||||
|
# Note: PyTorch uses official mirror as Tsinghua doesn't host CUDA builds
|
||||||
|
RUN pip install torch torchvision
|
||||||
|
|
||||||
|
# Install the package and dependencies
|
||||||
|
# Set version manually since .git is excluded by .dockerignore
|
||||||
|
ENV SETUPTOOLS_SCM_PRETEND_VERSION=1.0.0
|
||||||
|
RUN pip install -e .
|
||||||
|
|
||||||
|
# Install additional dependencies for server
|
||||||
|
RUN pip install requests
|
||||||
|
|
||||||
|
# Expose port for Ray Serve
|
||||||
|
EXPOSE 8001
|
||||||
|
|
||||||
|
# Create cache directory for models
|
||||||
|
RUN mkdir -p /root/.cache/huggingface/hub
|
||||||
|
|
||||||
|
# Health check
|
||||||
|
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
|
||||||
|
CMD python3 -c "import requests; requests.get('http://localhost:8001/', timeout=5)" || exit 1
|
||||||
|
|
||||||
|
# Default command to start the server (port 8001)
|
||||||
|
CMD ["texteller", "launch", "-p", "8001"]
|
||||||
|
|
||||||
253
README.docker.md
Normal file
253
README.docker.md
Normal file
@@ -0,0 +1,253 @@
|
|||||||
|
# TexTeller Docker Deployment Guide
|
||||||
|
|
||||||
|
This guide explains how to deploy TexTeller using Docker with NVIDIA GPU support (optimized for RTX 5080).
|
||||||
|
|
||||||
|
## Prerequisites
|
||||||
|
|
||||||
|
1. **NVIDIA Driver**: Install NVIDIA driver version 525 or later
|
||||||
|
2. **NVIDIA Container Toolkit**: Required for GPU access in Docker containers
|
||||||
|
3. **Docker**: Version 20.10 or later
|
||||||
|
4. **Docker Compose**: Version 1.29 or later (or use `docker compose` v2)
|
||||||
|
5. **Pre-downloaded Model**: Model should be in `~/.cache/huggingface/hub/models--OleehyO--TexTeller/`
|
||||||
|
|
||||||
|
## Setup NVIDIA Container Toolkit
|
||||||
|
|
||||||
|
If you haven't installed the NVIDIA Container Toolkit:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Add the package repository
|
||||||
|
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
|
||||||
|
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
|
||||||
|
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
|
||||||
|
|
||||||
|
# Install nvidia-container-toolkit
|
||||||
|
sudo apt-get update
|
||||||
|
sudo apt-get install -y nvidia-container-toolkit
|
||||||
|
|
||||||
|
# Restart Docker
|
||||||
|
sudo systemctl restart docker
|
||||||
|
```
|
||||||
|
|
||||||
|
## Quick Start
|
||||||
|
|
||||||
|
The easiest way to deploy is using the provided deployment script:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Run all checks and deploy
|
||||||
|
./deploy.sh deploy
|
||||||
|
|
||||||
|
# Or check system requirements first
|
||||||
|
./deploy.sh check
|
||||||
|
|
||||||
|
# View available commands
|
||||||
|
./deploy.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
## Build and Run
|
||||||
|
|
||||||
|
### Using the Deployment Script (Recommended)
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Full deployment (checks, build, and start)
|
||||||
|
./deploy.sh deploy
|
||||||
|
|
||||||
|
# Just build the image
|
||||||
|
./deploy.sh build
|
||||||
|
|
||||||
|
# Start/stop the service
|
||||||
|
./deploy.sh start
|
||||||
|
./deploy.sh stop
|
||||||
|
|
||||||
|
# View logs
|
||||||
|
./deploy.sh logs
|
||||||
|
|
||||||
|
# Check status
|
||||||
|
./deploy.sh status
|
||||||
|
```
|
||||||
|
|
||||||
|
### Using Docker Compose
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Build and start the service
|
||||||
|
docker-compose up -d
|
||||||
|
|
||||||
|
# View logs
|
||||||
|
docker-compose logs -f
|
||||||
|
|
||||||
|
# Stop the service
|
||||||
|
docker-compose down
|
||||||
|
```
|
||||||
|
|
||||||
|
### Using Docker directly
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Build the image
|
||||||
|
docker build -t texteller:latest .
|
||||||
|
|
||||||
|
# Run the container
|
||||||
|
docker run -d \
|
||||||
|
--name texteller-server \
|
||||||
|
--gpus '"device=0"' \
|
||||||
|
-p 8001:8001 \
|
||||||
|
-v ~/.cache/huggingface/hub/models--OleehyO--TexTeller:/root/.cache/huggingface/hub/models--OleehyO--TexTeller:ro \
|
||||||
|
-e CUDA_VISIBLE_DEVICES=0 \
|
||||||
|
texteller:latest
|
||||||
|
```
|
||||||
|
|
||||||
|
## API Usage
|
||||||
|
|
||||||
|
The server accepts JSON requests with either base64-encoded images or image URLs at the `/predict` endpoint.
|
||||||
|
|
||||||
|
### Using base64-encoded image
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Example with base64 image
|
||||||
|
curl -X POST http://localhost:8001/predict \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{
|
||||||
|
"image_base64": "..."
|
||||||
|
}'
|
||||||
|
```
|
||||||
|
|
||||||
|
### Using image URL
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Example with image URL
|
||||||
|
curl -X POST http://localhost:8001/predict \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{
|
||||||
|
"image_url": "https://example.com/math_equation.png"
|
||||||
|
}'
|
||||||
|
```
|
||||||
|
|
||||||
|
### Python client example
|
||||||
|
|
||||||
|
```python
|
||||||
|
import requests
|
||||||
|
import base64
|
||||||
|
|
||||||
|
# Method 1: Using base64
|
||||||
|
with open("equation.png", "rb") as f:
|
||||||
|
image_base64 = base64.b64encode(f.read()).decode()
|
||||||
|
|
||||||
|
response = requests.post(
|
||||||
|
"http://localhost:8001/predict",
|
||||||
|
json={"image_base64": image_base64}
|
||||||
|
)
|
||||||
|
print(response.json())
|
||||||
|
|
||||||
|
# Method 2: Using URL
|
||||||
|
response = requests.post(
|
||||||
|
"http://localhost:8001/predict",
|
||||||
|
json={"image_url": "https://example.com/math_equation.png"}
|
||||||
|
)
|
||||||
|
print(response.json())
|
||||||
|
```
|
||||||
|
|
||||||
|
Or use the provided test script:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Test with a local image
|
||||||
|
python examples/test_server.py path/to/equation.png
|
||||||
|
|
||||||
|
# Test with both local and URL
|
||||||
|
python examples/test_server.py path/to/equation.png https://example.com/formula.png
|
||||||
|
```
|
||||||
|
|
||||||
|
### Response format
|
||||||
|
|
||||||
|
Success response:
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"result": "\\frac{a}{b} = c"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Error response:
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"error": "Failed to decode image"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Configuration
|
||||||
|
|
||||||
|
You can configure the service by modifying environment variables in `docker-compose.yml`:
|
||||||
|
|
||||||
|
- `CUDA_VISIBLE_DEVICES`: GPU device ID (default: 0)
|
||||||
|
- `RAY_NUM_REPLICAS`: Number of Ray Serve replicas (default: 1)
|
||||||
|
- `RAY_NCPU_PER_REPLICA`: CPUs per replica (default: 4)
|
||||||
|
- `RAY_NGPU_PER_REPLICA`: GPUs per replica (default: 1)
|
||||||
|
|
||||||
|
## Monitoring
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Check container status
|
||||||
|
docker ps
|
||||||
|
|
||||||
|
# View real-time logs
|
||||||
|
docker-compose logs -f texteller
|
||||||
|
|
||||||
|
# Check GPU usage
|
||||||
|
nvidia-smi
|
||||||
|
|
||||||
|
# Check container resource usage
|
||||||
|
docker stats texteller-server
|
||||||
|
```
|
||||||
|
|
||||||
|
## Troubleshooting
|
||||||
|
|
||||||
|
### GPU not detected
|
||||||
|
```bash
|
||||||
|
# Verify NVIDIA runtime is available
|
||||||
|
docker run --rm --gpus all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
|
||||||
|
```
|
||||||
|
|
||||||
|
### Port already in use
|
||||||
|
Change the port mapping in `docker-compose.yml`:
|
||||||
|
```yaml
|
||||||
|
ports:
|
||||||
|
- "8080:8000" # Host port 8080 -> Container port 8000
|
||||||
|
```
|
||||||
|
|
||||||
|
### Model not found
|
||||||
|
Ensure the model is downloaded to the correct location:
|
||||||
|
```bash
|
||||||
|
ls -la ~/.cache/huggingface/hub/models--OleehyO--TexTeller/
|
||||||
|
```
|
||||||
|
|
||||||
|
## Performance Notes
|
||||||
|
|
||||||
|
- **RTX 5080**: Optimized for CUDA 12.8 with cuDNN 9
|
||||||
|
- **Memory**: Container requires ~4-6GB GPU memory (RTX 5080 has 16GB)
|
||||||
|
- **Throughput**: ~10-20 images/second depending on image complexity
|
||||||
|
- **Startup time**: ~30-60 seconds for model loading
|
||||||
|
|
||||||
|
## Advanced Configuration
|
||||||
|
|
||||||
|
### Multiple GPUs
|
||||||
|
|
||||||
|
To use multiple GPUs, modify `docker-compose.yml`:
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
environment:
|
||||||
|
- CUDA_VISIBLE_DEVICES=0,1
|
||||||
|
- RAY_NUM_REPLICAS=2
|
||||||
|
deploy:
|
||||||
|
resources:
|
||||||
|
reservations:
|
||||||
|
devices:
|
||||||
|
- driver: nvidia
|
||||||
|
device_ids: ['0', '1']
|
||||||
|
capabilities: [gpu]
|
||||||
|
```
|
||||||
|
|
||||||
|
### Production deployment
|
||||||
|
|
||||||
|
For production, consider:
|
||||||
|
1. Using a reverse proxy (nginx/traefik) for SSL/TLS
|
||||||
|
2. Adding authentication middleware
|
||||||
|
3. Implementing rate limiting
|
||||||
|
4. Setting up monitoring (Prometheus/Grafana)
|
||||||
|
5. Using orchestration (Kubernetes) for scaling
|
||||||
|
|
||||||
@@ -8,7 +8,6 @@
|
|||||||
</h1>
|
</h1>
|
||||||
|
|
||||||
[](https://oleehyo.github.io/TexTeller/)
|
[](https://oleehyo.github.io/TexTeller/)
|
||||||
[](https://arxiv.org/abs/2508.09220)
|
|
||||||
[](https://huggingface.co/datasets/OleehyO/latex-formulas-80M)
|
[](https://huggingface.co/datasets/OleehyO/latex-formulas-80M)
|
||||||
[](https://huggingface.co/OleehyO/TexTeller)
|
[](https://huggingface.co/OleehyO/TexTeller)
|
||||||
[](https://hub.docker.com/r/oleehyo/texteller)
|
[](https://hub.docker.com/r/oleehyo/texteller)
|
||||||
@@ -25,6 +24,8 @@ TexTeller was trained with **80M image-formula pairs** (previous dataset can be
|
|||||||
>[!NOTE]
|
>[!NOTE]
|
||||||
> If you would like to provide feedback or suggestions for this project, feel free to start a discussion in the [Discussions section](https://github.com/OleehyO/TexTeller/discussions).
|
> If you would like to provide feedback or suggestions for this project, feel free to start a discussion in the [Discussions section](https://github.com/OleehyO/TexTeller/discussions).
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
<table>
|
<table>
|
||||||
@@ -59,6 +60,10 @@ TexTeller was trained with **80M image-formula pairs** (previous dataset can be
|
|||||||
|
|
||||||
## 📮 Change Log
|
## 📮 Change Log
|
||||||
|
|
||||||
|
<!-- - [2025-08-15] We have published the [technical report](https://arxiv.org/abs/2508.09220) of TexTeller. The model evaluated on the Benchmark (which was trained from scratch and had its handwritten subset filtered based on the test set) is available at https://huggingface.co/OleehyO/TexTeller_en. **Please do not directly use the open-source version of TexTeller3.0 to reproduce the experimental results of handwritten formulas**, as this model includes the test sets of these benchmarks. -->
|
||||||
|
|
||||||
|
- [2025-08-15] We have open-sourced the [training dataset](https://huggingface.co/datasets/OleehyO/latex-formulas-80M) of TexTeller 3.0. Please note that the handwritten* subset of this dataset is collected from existing open-source handwritten datasets (including both training and test sets). If you need to use the handwritten* subset for your experimental ablation, please filter the test labels first.
|
||||||
|
|
||||||
- [2024-06-06] **TexTeller3.0 released!** The training data has been increased to **80M** (**10x more than** TexTeller2.0 and also improved in data diversity). TexTeller3.0's new features:
|
- [2024-06-06] **TexTeller3.0 released!** The training data has been increased to **80M** (**10x more than** TexTeller2.0 and also improved in data diversity). TexTeller3.0's new features:
|
||||||
|
|
||||||
- Support scanned image, handwritten formulas, English(Chinese) mixed formulas.
|
- Support scanned image, handwritten formulas, English(Chinese) mixed formulas.
|
||||||
|
|||||||
@@ -8,10 +8,9 @@
|
|||||||
</h1>
|
</h1>
|
||||||
|
|
||||||
[](https://oleehyo.github.io/TexTeller/)
|
[](https://oleehyo.github.io/TexTeller/)
|
||||||
[](https://arxiv.org/abs/2508.09220)
|
|
||||||
[](https://hub.docker.com/r/oleehyo/texteller)
|
|
||||||
[](https://huggingface.co/datasets/OleehyO/latex-formulas-80M)
|
[](https://huggingface.co/datasets/OleehyO/latex-formulas-80M)
|
||||||
[](https://huggingface.co/OleehyO/TexTeller)
|
[](https://huggingface.co/OleehyO/TexTeller)
|
||||||
|
[](https://hub.docker.com/r/oleehyo/texteller)
|
||||||
[](https://opensource.org/licenses/Apache-2.0)
|
[](https://opensource.org/licenses/Apache-2.0)
|
||||||
|
|
||||||
</div>
|
</div>
|
||||||
@@ -59,6 +58,10 @@ TexTeller 使用 **8千万图像-公式对** 进行训练(前代数据集可
|
|||||||
|
|
||||||
## 📮 更新日志
|
## 📮 更新日志
|
||||||
|
|
||||||
|
<!-- - [2025-08-15] 我们发布了 TexTeller 的[技术报告](https://arxiv.org/abs/2508.09220)。在基准集上评测的模型(从零训练,且对手写子集按测试集进行了过滤)可在 https://huggingface.co/OleehyO/TexTeller_en 获取。**请不要直接使用开源的 TexTeller3.0 版本来复现实验中的手写公式结果**,因为该模型的训练包含了这些基准的测试集。 -->
|
||||||
|
|
||||||
|
- [2025-08-15] 我们开源了 TexTeller 3.0 的[训练数据集](https://huggingface.co/datasets/OleehyO/latex-formulas-80M)。其中handwritten* 子集来自现有的开源手写数据集(**包含训练集和测试集**),请不要将该子集用于实验消融。
|
||||||
|
|
||||||
- [2024-06-06] **TexTeller3.0 发布!** 训练数据增至 **8千万**(是 TexTeller2.0 的 **10倍** 并提升了数据多样性)。TexTeller3.0 新特性:
|
- [2024-06-06] **TexTeller3.0 发布!** 训练数据增至 **8千万**(是 TexTeller2.0 的 **10倍** 并提升了数据多样性)。TexTeller3.0 新特性:
|
||||||
|
|
||||||
- 支持扫描件、手写公式、中英文混合公式识别
|
- 支持扫描件、手写公式、中英文混合公式识别
|
||||||
|
|||||||
259
deploy.sh
Executable file
259
deploy.sh
Executable file
@@ -0,0 +1,259 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# TexTeller Docker Deployment Script
|
||||||
|
|
||||||
|
set -e # Exit on error
|
||||||
|
|
||||||
|
# Colors for output
|
||||||
|
RED='\033[0;31m'
|
||||||
|
GREEN='\033[0;32m'
|
||||||
|
YELLOW='\033[1;33m'
|
||||||
|
NC='\033[0m' # No Color
|
||||||
|
|
||||||
|
# Configuration
|
||||||
|
MODEL_PATH="$HOME/.cache/huggingface/hub/models--OleehyO--TexTeller"
|
||||||
|
CONTAINER_NAME="texteller-server"
|
||||||
|
IMAGE_NAME="texteller:latest"
|
||||||
|
PORT=8001
|
||||||
|
|
||||||
|
# Function to print colored messages
|
||||||
|
print_info() {
|
||||||
|
echo -e "${GREEN}[INFO]${NC} $1"
|
||||||
|
}
|
||||||
|
|
||||||
|
print_warn() {
|
||||||
|
echo -e "${YELLOW}[WARN]${NC} $1"
|
||||||
|
}
|
||||||
|
|
||||||
|
print_error() {
|
||||||
|
echo -e "${RED}[ERROR]${NC} $1"
|
||||||
|
}
|
||||||
|
|
||||||
|
# Check if NVIDIA GPU is available
|
||||||
|
check_nvidia() {
|
||||||
|
print_info "Checking NVIDIA GPU availability..."
|
||||||
|
if ! command -v nvidia-smi &> /dev/null; then
|
||||||
|
print_error "nvidia-smi not found. Please install NVIDIA drivers."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
nvidia-smi > /dev/null 2>&1
|
||||||
|
if [ $? -eq 0 ]; then
|
||||||
|
print_info "NVIDIA GPU detected:"
|
||||||
|
nvidia-smi --query-gpu=name,memory.total --format=csv,noheader
|
||||||
|
else
|
||||||
|
print_error "NVIDIA GPU not detected or drivers not working."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
}
|
||||||
|
|
||||||
|
# Check if Docker is installed
|
||||||
|
check_docker() {
|
||||||
|
print_info "Checking Docker installation..."
|
||||||
|
if ! command -v docker &> /dev/null; then
|
||||||
|
print_error "Docker not found. Please install Docker."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
print_info "Docker version: $(docker --version)"
|
||||||
|
}
|
||||||
|
|
||||||
|
# Check if NVIDIA Container Toolkit is installed
|
||||||
|
check_nvidia_docker() {
|
||||||
|
print_info "Checking NVIDIA Container Toolkit..."
|
||||||
|
if ! docker run --rm --gpus all nvidia/cuda:12.8.0-base-ubuntu24.04 nvidia-smi &> /dev/null; then
|
||||||
|
print_error "NVIDIA Container Toolkit not working properly."
|
||||||
|
print_info "Please install it with:"
|
||||||
|
echo " sudo apt-get install -y nvidia-container-toolkit"
|
||||||
|
echo " sudo systemctl restart docker"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
print_info "NVIDIA Container Toolkit is working."
|
||||||
|
}
|
||||||
|
|
||||||
|
# Check if model exists
|
||||||
|
check_model() {
|
||||||
|
print_info "Checking model availability..."
|
||||||
|
if [ ! -d "$MODEL_PATH" ]; then
|
||||||
|
print_error "Model not found at: $MODEL_PATH"
|
||||||
|
print_info "Please download the model first using:"
|
||||||
|
echo " python -c 'from texteller import load_model; load_model()'"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
print_info "Model found at: $MODEL_PATH"
|
||||||
|
}
|
||||||
|
|
||||||
|
# Build Docker image
|
||||||
|
build_image() {
|
||||||
|
print_info "Building Docker image..."
|
||||||
|
docker build -t $IMAGE_NAME .
|
||||||
|
if [ $? -eq 0 ]; then
|
||||||
|
print_info "Docker image built successfully: $IMAGE_NAME"
|
||||||
|
else
|
||||||
|
print_error "Failed to build Docker image."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
}
|
||||||
|
|
||||||
|
# Stop and remove existing container
|
||||||
|
stop_container() {
|
||||||
|
if [ "$(docker ps -q -f name=$CONTAINER_NAME)" ]; then
|
||||||
|
print_info "Stopping existing container..."
|
||||||
|
docker stop $CONTAINER_NAME
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ "$(docker ps -aq -f name=$CONTAINER_NAME)" ]; then
|
||||||
|
print_info "Removing existing container..."
|
||||||
|
docker rm $CONTAINER_NAME
|
||||||
|
fi
|
||||||
|
}
|
||||||
|
|
||||||
|
# Start container
|
||||||
|
start_container() {
|
||||||
|
print_info "Starting TexTeller server container..."
|
||||||
|
docker run -d \
|
||||||
|
--name $CONTAINER_NAME \
|
||||||
|
--gpus '"device=0"' \
|
||||||
|
-p $PORT:8001 \
|
||||||
|
--shm-size=2g \
|
||||||
|
-v "$HOME/.cache/huggingface:/root/.cache/huggingface:ro" \
|
||||||
|
-e CUDA_VISIBLE_DEVICES=0 \
|
||||||
|
-e HF_HOME=/root/.cache/huggingface \
|
||||||
|
-e HF_HUB_OFFLINE=1 \
|
||||||
|
-e TRANSFORMERS_OFFLINE=1 \
|
||||||
|
-e RAY_NUM_REPLICAS=1 \
|
||||||
|
-e RAY_NCPU_PER_REPLICA=4 \
|
||||||
|
-e RAY_NGPU_PER_REPLICA=1 \
|
||||||
|
--restart unless-stopped \
|
||||||
|
$IMAGE_NAME
|
||||||
|
|
||||||
|
if [ $? -eq 0 ]; then
|
||||||
|
print_info "Container started successfully!"
|
||||||
|
print_info "Server will be available at: http://localhost:$PORT/predict"
|
||||||
|
else
|
||||||
|
print_error "Failed to start container."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
}
|
||||||
|
|
||||||
|
# Wait for server to be ready
|
||||||
|
wait_for_server() {
|
||||||
|
print_info "Waiting for server to be ready..."
|
||||||
|
max_attempts=60
|
||||||
|
attempt=0
|
||||||
|
|
||||||
|
while [ $attempt -lt $max_attempts ]; do
|
||||||
|
if curl -s http://localhost:$PORT/ > /dev/null 2>&1; then
|
||||||
|
print_info "Server is ready!"
|
||||||
|
return 0
|
||||||
|
fi
|
||||||
|
attempt=$((attempt + 1))
|
||||||
|
echo -n "."
|
||||||
|
sleep 1
|
||||||
|
done
|
||||||
|
|
||||||
|
echo ""
|
||||||
|
print_warn "Server might still be initializing. Check logs with: docker logs -f $CONTAINER_NAME"
|
||||||
|
}
|
||||||
|
|
||||||
|
# Show logs
|
||||||
|
show_logs() {
|
||||||
|
print_info "Showing container logs (Ctrl+C to exit)..."
|
||||||
|
docker logs -f $CONTAINER_NAME
|
||||||
|
}
|
||||||
|
|
||||||
|
# Main deployment workflow
|
||||||
|
case "${1:-deploy}" in
|
||||||
|
check)
|
||||||
|
check_nvidia
|
||||||
|
check_docker
|
||||||
|
check_nvidia_docker
|
||||||
|
check_model
|
||||||
|
print_info "All checks passed!"
|
||||||
|
;;
|
||||||
|
|
||||||
|
build)
|
||||||
|
check_docker
|
||||||
|
build_image
|
||||||
|
;;
|
||||||
|
|
||||||
|
deploy)
|
||||||
|
check_nvidia
|
||||||
|
check_docker
|
||||||
|
check_nvidia_docker
|
||||||
|
check_model
|
||||||
|
build_image
|
||||||
|
stop_container
|
||||||
|
start_container
|
||||||
|
wait_for_server
|
||||||
|
print_info ""
|
||||||
|
print_info "======================================"
|
||||||
|
print_info "TexTeller server deployed successfully!"
|
||||||
|
print_info "======================================"
|
||||||
|
print_info "API endpoint: http://localhost:$PORT/predict"
|
||||||
|
print_info ""
|
||||||
|
print_info "Test the server with:"
|
||||||
|
print_info " python examples/test_server.py path/to/image.png"
|
||||||
|
print_info ""
|
||||||
|
print_info "View logs with:"
|
||||||
|
print_info " docker logs -f $CONTAINER_NAME"
|
||||||
|
print_info ""
|
||||||
|
print_info "Stop the server with:"
|
||||||
|
print_info " docker stop $CONTAINER_NAME"
|
||||||
|
;;
|
||||||
|
|
||||||
|
start)
|
||||||
|
if [ "$(docker ps -aq -f name=$CONTAINER_NAME)" ]; then
|
||||||
|
docker start $CONTAINER_NAME
|
||||||
|
print_info "Container started."
|
||||||
|
else
|
||||||
|
print_error "Container does not exist. Run './deploy.sh deploy' first."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
;;
|
||||||
|
|
||||||
|
stop)
|
||||||
|
stop_container
|
||||||
|
print_info "Container stopped."
|
||||||
|
;;
|
||||||
|
|
||||||
|
restart)
|
||||||
|
docker restart $CONTAINER_NAME
|
||||||
|
print_info "Container restarted."
|
||||||
|
;;
|
||||||
|
|
||||||
|
logs)
|
||||||
|
show_logs
|
||||||
|
;;
|
||||||
|
|
||||||
|
status)
|
||||||
|
if [ "$(docker ps -q -f name=$CONTAINER_NAME)" ]; then
|
||||||
|
print_info "Container is running."
|
||||||
|
docker stats --no-stream $CONTAINER_NAME
|
||||||
|
else
|
||||||
|
print_warn "Container is not running."
|
||||||
|
fi
|
||||||
|
;;
|
||||||
|
|
||||||
|
clean)
|
||||||
|
stop_container
|
||||||
|
print_info "Removing Docker image..."
|
||||||
|
docker rmi $IMAGE_NAME 2>/dev/null || true
|
||||||
|
print_info "Cleanup complete."
|
||||||
|
;;
|
||||||
|
|
||||||
|
*)
|
||||||
|
echo "Usage: $0 {check|build|deploy|start|stop|restart|logs|status|clean}"
|
||||||
|
echo ""
|
||||||
|
echo "Commands:"
|
||||||
|
echo " check - Check system requirements"
|
||||||
|
echo " build - Build Docker image only"
|
||||||
|
echo " deploy - Full deployment (build + start)"
|
||||||
|
echo " start - Start existing container"
|
||||||
|
echo " stop - Stop container"
|
||||||
|
echo " restart - Restart container"
|
||||||
|
echo " logs - Show container logs"
|
||||||
|
echo " status - Show container status"
|
||||||
|
echo " clean - Remove container and image"
|
||||||
|
exit 1
|
||||||
|
;;
|
||||||
|
esac
|
||||||
|
|
||||||
38
docker-compose.yml
Normal file
38
docker-compose.yml
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
version: '3.8'
|
||||||
|
|
||||||
|
services:
|
||||||
|
texteller:
|
||||||
|
build:
|
||||||
|
context: .
|
||||||
|
dockerfile: Dockerfile
|
||||||
|
container_name: texteller-server
|
||||||
|
runtime: nvidia
|
||||||
|
environment:
|
||||||
|
- NVIDIA_VISIBLE_DEVICES=all
|
||||||
|
- NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||||
|
- CUDA_VISIBLE_DEVICES=0
|
||||||
|
# Ray Serve configuration
|
||||||
|
- RAY_NUM_REPLICAS=1
|
||||||
|
- RAY_NCPU_PER_REPLICA=4
|
||||||
|
- RAY_NGPU_PER_REPLICA=1
|
||||||
|
ports:
|
||||||
|
- "8001:8001"
|
||||||
|
volumes:
|
||||||
|
# Mount the model cache directory to avoid downloading models
|
||||||
|
- ~/.cache/huggingface/hub/models--OleehyO--TexTeller:/root/.cache/huggingface/hub/models--OleehyO--TexTeller:ro
|
||||||
|
deploy:
|
||||||
|
resources:
|
||||||
|
reservations:
|
||||||
|
devices:
|
||||||
|
- driver: nvidia
|
||||||
|
device_ids: ['0'] # Use first GPU (RTX 5080)
|
||||||
|
capabilities: [gpu]
|
||||||
|
restart: unless-stopped
|
||||||
|
command: ["texteller", "launch", "server", "-p", "8001"]
|
||||||
|
healthcheck:
|
||||||
|
test: ["CMD", "python3", "-c", "import requests; requests.get('http://localhost:8001/', timeout=5)"]
|
||||||
|
interval: 30s
|
||||||
|
timeout: 10s
|
||||||
|
retries: 3
|
||||||
|
start_period: 60s
|
||||||
|
|
||||||
77
examples/test_server.py
Normal file
77
examples/test_server.py
Normal file
@@ -0,0 +1,77 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Example client script to test the TexTeller server API.
|
||||||
|
"""
|
||||||
|
import requests
|
||||||
|
import base64
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
|
||||||
|
def test_base64_request(image_path: str, server_url: str = "http://localhost:8001/predict"):
|
||||||
|
"""Test the server with a base64-encoded image."""
|
||||||
|
# Read and encode the image
|
||||||
|
with open(image_path, "rb") as f:
|
||||||
|
image_data = f.read()
|
||||||
|
image_base64 = base64.b64encode(image_data).decode()
|
||||||
|
|
||||||
|
# Send request
|
||||||
|
response = requests.post(server_url, json={"image_base64": image_base64}, headers={"Content-Type": "application/json"})
|
||||||
|
|
||||||
|
# Print result
|
||||||
|
if response.status_code == 200:
|
||||||
|
result = response.json()
|
||||||
|
print(f"✓ Success!")
|
||||||
|
print(f"Result: {result.get('result', 'N/A')}")
|
||||||
|
return result
|
||||||
|
else:
|
||||||
|
print(f"✗ Error: {response.status_code}")
|
||||||
|
print(f"Response: {response.text}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def test_url_request(image_url: str, server_url: str = "http://localhost:8001/predict"):
|
||||||
|
"""Test the server with an image URL."""
|
||||||
|
# Send request
|
||||||
|
response = requests.post(server_url, json={"image_url": image_url}, headers={"Content-Type": "application/json"})
|
||||||
|
|
||||||
|
# Print result
|
||||||
|
if response.status_code == 200:
|
||||||
|
result = response.json()
|
||||||
|
print(f"✓ Success!")
|
||||||
|
print(f"Result: {result.get('result', 'N/A')}")
|
||||||
|
return result
|
||||||
|
else:
|
||||||
|
print(f"✗ Error: {response.status_code}")
|
||||||
|
print(f"Response: {response.text}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
print("=" * 50)
|
||||||
|
print("TexTeller Server API Test")
|
||||||
|
print("=" * 50)
|
||||||
|
|
||||||
|
# Test with local image if provided
|
||||||
|
if len(sys.argv) > 1:
|
||||||
|
image_path = sys.argv[1]
|
||||||
|
if Path(image_path).exists():
|
||||||
|
print(f"\nTest 1: Base64 request with local image")
|
||||||
|
print(f"Image: {image_path}")
|
||||||
|
test_base64_request(image_path)
|
||||||
|
else:
|
||||||
|
print(f"Error: Image file not found: {image_path}")
|
||||||
|
|
||||||
|
# Test with URL if provided
|
||||||
|
if len(sys.argv) > 2:
|
||||||
|
image_url = sys.argv[2]
|
||||||
|
print(f"\nTest 2: URL request")
|
||||||
|
print(f"URL: {image_url}")
|
||||||
|
test_url_request(image_url)
|
||||||
|
|
||||||
|
if len(sys.argv) == 1:
|
||||||
|
print("\nUsage:")
|
||||||
|
print(f" python {sys.argv[0]} <image_path> [image_url]")
|
||||||
|
print("\nExamples:")
|
||||||
|
print(f" python {sys.argv[0]} equation.png")
|
||||||
|
print(f" python {sys.argv[0]} equation.png https://example.com/formula.png")
|
||||||
@@ -31,7 +31,7 @@ from texteller.utils import get_device
|
|||||||
"-p",
|
"-p",
|
||||||
"--port",
|
"--port",
|
||||||
type=int,
|
type=int,
|
||||||
default=8000,
|
default=8001,
|
||||||
help="Port to run the server on",
|
help="Port to run the server on",
|
||||||
)
|
)
|
||||||
@click.option(
|
@click.option(
|
||||||
|
|||||||
@@ -1,7 +1,11 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
|
import base64
|
||||||
|
import requests
|
||||||
|
from io import BytesIO
|
||||||
|
|
||||||
from starlette.requests import Request
|
from starlette.requests import Request
|
||||||
|
from starlette.responses import JSONResponse
|
||||||
from ray import serve
|
from ray import serve
|
||||||
from ray.serve.handle import DeploymentHandle
|
from ray.serve.handle import DeploymentHandle
|
||||||
|
|
||||||
@@ -57,13 +61,42 @@ class Ingress:
|
|||||||
def __init__(self, rec_server: DeploymentHandle) -> None:
|
def __init__(self, rec_server: DeploymentHandle) -> None:
|
||||||
self.texteller_server = rec_server
|
self.texteller_server = rec_server
|
||||||
|
|
||||||
async def __call__(self, request: Request) -> str:
|
async def __call__(self, request: Request):
|
||||||
form = await request.form()
|
try:
|
||||||
img_rb = await form["img"].read()
|
# Parse JSON body
|
||||||
|
body = await request.json()
|
||||||
|
|
||||||
img_nparray = np.frombuffer(img_rb, np.uint8)
|
# Get image data from either base64 or URL
|
||||||
img_nparray = cv2.imdecode(img_nparray, cv2.IMREAD_COLOR)
|
if "image_base64" in body:
|
||||||
img_nparray = cv2.cvtColor(img_nparray, cv2.COLOR_BGR2RGB)
|
# Decode base64 image
|
||||||
|
image_data = body["image_base64"]
|
||||||
|
# Remove data URL prefix if present (e.g., "data:image/png;base64,")
|
||||||
|
if "," in image_data:
|
||||||
|
image_data = image_data.split(",", 1)[1]
|
||||||
|
img_bytes = base64.b64decode(image_data)
|
||||||
|
img_nparray = np.frombuffer(img_bytes, np.uint8)
|
||||||
|
|
||||||
pred = await self.texteller_server.predict.remote(img_nparray)
|
elif "image_url" in body:
|
||||||
return pred
|
# Download image from URL
|
||||||
|
image_url = body["image_url"]
|
||||||
|
response = requests.get(image_url, timeout=30)
|
||||||
|
response.raise_for_status()
|
||||||
|
img_bytes = response.content
|
||||||
|
img_nparray = np.frombuffer(img_bytes, np.uint8)
|
||||||
|
|
||||||
|
else:
|
||||||
|
return JSONResponse({"error": "Either 'image_base64' or 'image_url' must be provided"}, status_code=400)
|
||||||
|
|
||||||
|
# Decode and convert image
|
||||||
|
img_nparray = cv2.imdecode(img_nparray, cv2.IMREAD_COLOR)
|
||||||
|
if img_nparray is None:
|
||||||
|
return JSONResponse({"error": "Failed to decode image"}, status_code=400)
|
||||||
|
img_nparray = cv2.cvtColor(img_nparray, cv2.COLOR_BGR2RGB)
|
||||||
|
|
||||||
|
# Get prediction
|
||||||
|
pred = await self.texteller_server.predict.remote(img_nparray)
|
||||||
|
|
||||||
|
return JSONResponse({"result": pred})
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
return JSONResponse({"error": str(e)}, status_code=500)
|
||||||
|
|||||||
Reference in New Issue
Block a user