4 Commits
dev ... main

Author SHA1 Message Date
6813f3d4f7 fix: dockerfile
Some checks failed
Sphinx: Render docs / build (push) Has been cancelled
Python Linting / lint (push) Has been cancelled
Run Tests with Pytest / test (push) Has been cancelled
2025-12-15 23:21:47 +08:00
ba0968b2da feat: add dockerfile
Some checks failed
Sphinx: Render docs / build (push) Has been cancelled
Python Linting / lint (push) Has been cancelled
Run Tests with Pytest / test (push) Has been cancelled
2025-12-15 22:31:13 +08:00
OleehyO
9b88cec77b Update 2025-08-22 21:45:41 +08:00
OleehyO
154c8fcab5 📝 [docs] Update README with TexTeller 3.0 technical report and dataset release
- Added technical report and dataset release announcements to changelog
- Updated both English and Chinese README files
- Reordered Docker badge in Chinese README for consistency

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-22 15:26:47 +08:00
10 changed files with 806 additions and 12 deletions

57
.dockerignore Normal file
View File

@@ -0,0 +1,57 @@
# Python
__pycache__/
*.py[cod]
*$py.class
*.so
.Python
*.egg-info/
dist/
build/
*.egg
# Virtual environments
venv/
env/
ENV/
.venv
# IDEs
.vscode/
.idea/
*.swp
*.swo
*~
# Git
.git/
.gitignore
# Testing
.pytest_cache/
.coverage
htmlcov/
# Documentation
docs/_build/
# OS
.DS_Store
Thumbs.db
# Cache
.cache/
*.log
# Jupyter
.ipynb_checkpoints/
# Model files (will be mounted from host)
models/
*.pth
*.onnx
examples/
assets/
docs/
tests/
README.docker.md

69
Dockerfile Normal file
View File

@@ -0,0 +1,69 @@
# Use NVIDIA CUDA base image with Python 3.12 (CUDA 12.8 for RTX 5080)
FROM nvidia/cuda:12.8.0-base-ubuntu24.04
# Set environment variables
ENV DEBIAN_FRONTEND=noninteractive \
PYTHONUNBUFFERED=1 \
PYTHONDONTWRITEBYTECODE=1 \
PIP_NO_CACHE_DIR=1 \
CUDA_VISIBLE_DEVICES=0
# Configure apt to use Tsinghua mirror (清华源)
RUN sed -i 's@//archive.ubuntu.com@//mirrors.tuna.tsinghua.edu.cn@g' /etc/apt/sources.list.d/ubuntu.sources && \
sed -i 's@//security.ubuntu.com@//mirrors.tuna.tsinghua.edu.cn@g' /etc/apt/sources.list.d/ubuntu.sources
# Install Python and system dependencies (Ubuntu 24.04 uses Python 3.12)
RUN apt-get update && apt-get install -y \
python3 \
python3-pip \
python3-venv \
git \
libglib2.0-0 \
libsm6 \
libxext6 \
libxrender-dev \
libgomp1 \
wget \
&& rm -rf /var/lib/apt/lists/*
# Create symlink for python command
RUN ln -sf /usr/bin/python3 /usr/bin/python
# Configure pip to use Tsinghua mirror (清华源) and allow system-wide installs
RUN python3 -m pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple && \
python3 -m pip config set global.break-system-packages true
# Upgrade pip (ignore system-installed packages)
RUN pip install --upgrade --ignore-installed pip setuptools wheel
# Set working directory
WORKDIR /app
# Copy project files
COPY . /app/
# Install PyTorch with CUDA support first (cu124 is compatible with CUDA 12.8)
# Note: PyTorch uses official mirror as Tsinghua doesn't host CUDA builds
RUN pip install torch torchvision
# Install the package and dependencies
# Set version manually since .git is excluded by .dockerignore
ENV SETUPTOOLS_SCM_PRETEND_VERSION=1.0.0
RUN pip install -e .
# Install additional dependencies for server
RUN pip install requests
# Expose port for Ray Serve
EXPOSE 8001
# Create cache directory for models
RUN mkdir -p /root/.cache/huggingface/hub
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
CMD python3 -c "import requests; requests.get('http://localhost:8001/', timeout=5)" || exit 1
# Default command to start the server (port 8001)
CMD ["texteller", "launch", "-p", "8001"]

253
README.docker.md Normal file
View File

@@ -0,0 +1,253 @@
# TexTeller Docker Deployment Guide
This guide explains how to deploy TexTeller using Docker with NVIDIA GPU support (optimized for RTX 5080).
## Prerequisites
1. **NVIDIA Driver**: Install NVIDIA driver version 525 or later
2. **NVIDIA Container Toolkit**: Required for GPU access in Docker containers
3. **Docker**: Version 20.10 or later
4. **Docker Compose**: Version 1.29 or later (or use `docker compose` v2)
5. **Pre-downloaded Model**: Model should be in `~/.cache/huggingface/hub/models--OleehyO--TexTeller/`
## Setup NVIDIA Container Toolkit
If you haven't installed the NVIDIA Container Toolkit:
```bash
# Add the package repository
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
# Install nvidia-container-toolkit
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit
# Restart Docker
sudo systemctl restart docker
```
## Quick Start
The easiest way to deploy is using the provided deployment script:
```bash
# Run all checks and deploy
./deploy.sh deploy
# Or check system requirements first
./deploy.sh check
# View available commands
./deploy.sh
```
## Build and Run
### Using the Deployment Script (Recommended)
```bash
# Full deployment (checks, build, and start)
./deploy.sh deploy
# Just build the image
./deploy.sh build
# Start/stop the service
./deploy.sh start
./deploy.sh stop
# View logs
./deploy.sh logs
# Check status
./deploy.sh status
```
### Using Docker Compose
```bash
# Build and start the service
docker-compose up -d
# View logs
docker-compose logs -f
# Stop the service
docker-compose down
```
### Using Docker directly
```bash
# Build the image
docker build -t texteller:latest .
# Run the container
docker run -d \
--name texteller-server \
--gpus '"device=0"' \
-p 8001:8001 \
-v ~/.cache/huggingface/hub/models--OleehyO--TexTeller:/root/.cache/huggingface/hub/models--OleehyO--TexTeller:ro \
-e CUDA_VISIBLE_DEVICES=0 \
texteller:latest
```
## API Usage
The server accepts JSON requests with either base64-encoded images or image URLs at the `/predict` endpoint.
### Using base64-encoded image
```bash
# Example with base64 image
curl -X POST http://localhost:8001/predict \
-H "Content-Type: application/json" \
-d '{
"image_base64": "..."
}'
```
### Using image URL
```bash
# Example with image URL
curl -X POST http://localhost:8001/predict \
-H "Content-Type: application/json" \
-d '{
"image_url": "https://example.com/math_equation.png"
}'
```
### Python client example
```python
import requests
import base64
# Method 1: Using base64
with open("equation.png", "rb") as f:
image_base64 = base64.b64encode(f.read()).decode()
response = requests.post(
"http://localhost:8001/predict",
json={"image_base64": image_base64}
)
print(response.json())
# Method 2: Using URL
response = requests.post(
"http://localhost:8001/predict",
json={"image_url": "https://example.com/math_equation.png"}
)
print(response.json())
```
Or use the provided test script:
```bash
# Test with a local image
python examples/test_server.py path/to/equation.png
# Test with both local and URL
python examples/test_server.py path/to/equation.png https://example.com/formula.png
```
### Response format
Success response:
```json
{
"result": "\\frac{a}{b} = c"
}
```
Error response:
```json
{
"error": "Failed to decode image"
}
```
## Configuration
You can configure the service by modifying environment variables in `docker-compose.yml`:
- `CUDA_VISIBLE_DEVICES`: GPU device ID (default: 0)
- `RAY_NUM_REPLICAS`: Number of Ray Serve replicas (default: 1)
- `RAY_NCPU_PER_REPLICA`: CPUs per replica (default: 4)
- `RAY_NGPU_PER_REPLICA`: GPUs per replica (default: 1)
## Monitoring
```bash
# Check container status
docker ps
# View real-time logs
docker-compose logs -f texteller
# Check GPU usage
nvidia-smi
# Check container resource usage
docker stats texteller-server
```
## Troubleshooting
### GPU not detected
```bash
# Verify NVIDIA runtime is available
docker run --rm --gpus all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
```
### Port already in use
Change the port mapping in `docker-compose.yml`:
```yaml
ports:
- "8080:8000" # Host port 8080 -> Container port 8000
```
### Model not found
Ensure the model is downloaded to the correct location:
```bash
ls -la ~/.cache/huggingface/hub/models--OleehyO--TexTeller/
```
## Performance Notes
- **RTX 5080**: Optimized for CUDA 12.8 with cuDNN 9
- **Memory**: Container requires ~4-6GB GPU memory (RTX 5080 has 16GB)
- **Throughput**: ~10-20 images/second depending on image complexity
- **Startup time**: ~30-60 seconds for model loading
## Advanced Configuration
### Multiple GPUs
To use multiple GPUs, modify `docker-compose.yml`:
```yaml
environment:
- CUDA_VISIBLE_DEVICES=0,1
- RAY_NUM_REPLICAS=2
deploy:
resources:
reservations:
devices:
- driver: nvidia
device_ids: ['0', '1']
capabilities: [gpu]
```
### Production deployment
For production, consider:
1. Using a reverse proxy (nginx/traefik) for SSL/TLS
2. Adding authentication middleware
3. Implementing rate limiting
4. Setting up monitoring (Prometheus/Grafana)
5. Using orchestration (Kubernetes) for scaling

View File

@@ -8,7 +8,6 @@
</h1>
[![](https://img.shields.io/badge/API-Docs-orange.svg?logo=read-the-docs)](https://oleehyo.github.io/TexTeller/)
[![arXiv](https://img.shields.io/badge/arXiv-2508.09200-b31b1b.svg?logo=arxiv&logoColor=white)](https://arxiv.org/abs/2508.09220)
[![](https://img.shields.io/badge/Data-Texteller3.0-brightgreen.svg?logo=huggingface)](https://huggingface.co/datasets/OleehyO/latex-formulas-80M)
[![](https://img.shields.io/badge/Weights-Texteller3.0-yellow.svg?logo=huggingface)](https://huggingface.co/OleehyO/TexTeller)
[![](https://img.shields.io/badge/docker-pull-green.svg?logo=docker)](https://hub.docker.com/r/oleehyo/texteller)
@@ -25,6 +24,8 @@ TexTeller was trained with **80M image-formula pairs** (previous dataset can be
>[!NOTE]
> If you would like to provide feedback or suggestions for this project, feel free to start a discussion in the [Discussions section](https://github.com/OleehyO/TexTeller/discussions).
---
<table>
@@ -59,6 +60,10 @@ TexTeller was trained with **80M image-formula pairs** (previous dataset can be
## 📮 Change Log
<!-- - [2025-08-15] We have published the [technical report](https://arxiv.org/abs/2508.09220) of TexTeller. The model evaluated on the Benchmark (which was trained from scratch and had its handwritten subset filtered based on the test set) is available at https://huggingface.co/OleehyO/TexTeller_en. **Please do not directly use the open-source version of TexTeller3.0 to reproduce the experimental results of handwritten formulas**, as this model includes the test sets of these benchmarks. -->
- [2025-08-15] We have open-sourced the [training dataset](https://huggingface.co/datasets/OleehyO/latex-formulas-80M) of TexTeller 3.0. Please note that the handwritten* subset of this dataset is collected from existing open-source handwritten datasets (including both training and test sets). If you need to use the handwritten* subset for your experimental ablation, please filter the test labels first.
- [2024-06-06] **TexTeller3.0 released!** The training data has been increased to **80M** (**10x more than** TexTeller2.0 and also improved in data diversity). TexTeller3.0's new features:
- Support scanned image, handwritten formulas, English(Chinese) mixed formulas.

View File

@@ -8,10 +8,9 @@
</h1>
[![](https://img.shields.io/badge/API-文档-orange.svg?logo=read-the-docs)](https://oleehyo.github.io/TexTeller/)
[![arXiv](https://img.shields.io/badge/arXiv-2508.09200-b31b1b.svg?logo=arxiv&logoColor=white)](https://arxiv.org/abs/2508.09220)
[![](https://img.shields.io/badge/docker-镜像-green.svg?logo=docker)](https://hub.docker.com/r/oleehyo/texteller)
[![](https://img.shields.io/badge/数据-TexTeller3.0-brightgreen.svg?logo=huggingface)](https://huggingface.co/datasets/OleehyO/latex-formulas-80M)
[![](https://img.shields.io/badge/权重-TexTeller3.0-yellow.svg?logo=huggingface)](https://huggingface.co/OleehyO/TexTeller)
[![](https://img.shields.io/badge/docker-镜像-green.svg?logo=docker)](https://hub.docker.com/r/oleehyo/texteller)
[![](https://img.shields.io/badge/协议-Apache_2.0-blue.svg?logo=github)](https://opensource.org/licenses/Apache-2.0)
</div>
@@ -59,6 +58,10 @@ TexTeller 使用 **8千万图像-公式对** 进行训练(前代数据集可
## 📮 更新日志
<!-- - [2025-08-15] 我们发布了 TexTeller 的[技术报告](https://arxiv.org/abs/2508.09220)。在基准集上评测的模型(从零训练,且对手写子集按测试集进行了过滤)可在 https://huggingface.co/OleehyO/TexTeller_en 获取。**请不要直接使用开源的 TexTeller3.0 版本来复现实验中的手写公式结果**,因为该模型的训练包含了这些基准的测试集。 -->
- [2025-08-15] 我们开源了 TexTeller 3.0 的[训练数据集](https://huggingface.co/datasets/OleehyO/latex-formulas-80M)。其中handwritten* 子集来自现有的开源手写数据集(**包含训练集和测试集**),请不要将该子集用于实验消融。
- [2024-06-06] **TexTeller3.0 发布!** 训练数据增至 **8千万**(是 TexTeller2.0 的 **10倍** 并提升了数据多样性。TexTeller3.0 新特性:
- 支持扫描件、手写公式、中英文混合公式识别

259
deploy.sh Executable file
View File

@@ -0,0 +1,259 @@
#!/bin/bash
# TexTeller Docker Deployment Script
set -e # Exit on error
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
NC='\033[0m' # No Color
# Configuration
MODEL_PATH="$HOME/.cache/huggingface/hub/models--OleehyO--TexTeller"
CONTAINER_NAME="texteller-server"
IMAGE_NAME="texteller:latest"
PORT=8001
# Function to print colored messages
print_info() {
echo -e "${GREEN}[INFO]${NC} $1"
}
print_warn() {
echo -e "${YELLOW}[WARN]${NC} $1"
}
print_error() {
echo -e "${RED}[ERROR]${NC} $1"
}
# Check if NVIDIA GPU is available
check_nvidia() {
print_info "Checking NVIDIA GPU availability..."
if ! command -v nvidia-smi &> /dev/null; then
print_error "nvidia-smi not found. Please install NVIDIA drivers."
exit 1
fi
nvidia-smi > /dev/null 2>&1
if [ $? -eq 0 ]; then
print_info "NVIDIA GPU detected:"
nvidia-smi --query-gpu=name,memory.total --format=csv,noheader
else
print_error "NVIDIA GPU not detected or drivers not working."
exit 1
fi
}
# Check if Docker is installed
check_docker() {
print_info "Checking Docker installation..."
if ! command -v docker &> /dev/null; then
print_error "Docker not found. Please install Docker."
exit 1
fi
print_info "Docker version: $(docker --version)"
}
# Check if NVIDIA Container Toolkit is installed
check_nvidia_docker() {
print_info "Checking NVIDIA Container Toolkit..."
if ! docker run --rm --gpus all nvidia/cuda:12.8.0-base-ubuntu24.04 nvidia-smi &> /dev/null; then
print_error "NVIDIA Container Toolkit not working properly."
print_info "Please install it with:"
echo " sudo apt-get install -y nvidia-container-toolkit"
echo " sudo systemctl restart docker"
exit 1
fi
print_info "NVIDIA Container Toolkit is working."
}
# Check if model exists
check_model() {
print_info "Checking model availability..."
if [ ! -d "$MODEL_PATH" ]; then
print_error "Model not found at: $MODEL_PATH"
print_info "Please download the model first using:"
echo " python -c 'from texteller import load_model; load_model()'"
exit 1
fi
print_info "Model found at: $MODEL_PATH"
}
# Build Docker image
build_image() {
print_info "Building Docker image..."
docker build -t $IMAGE_NAME .
if [ $? -eq 0 ]; then
print_info "Docker image built successfully: $IMAGE_NAME"
else
print_error "Failed to build Docker image."
exit 1
fi
}
# Stop and remove existing container
stop_container() {
if [ "$(docker ps -q -f name=$CONTAINER_NAME)" ]; then
print_info "Stopping existing container..."
docker stop $CONTAINER_NAME
fi
if [ "$(docker ps -aq -f name=$CONTAINER_NAME)" ]; then
print_info "Removing existing container..."
docker rm $CONTAINER_NAME
fi
}
# Start container
start_container() {
print_info "Starting TexTeller server container..."
docker run -d \
--name $CONTAINER_NAME \
--gpus '"device=0"' \
-p $PORT:8001 \
--shm-size=2g \
-v "$HOME/.cache/huggingface:/root/.cache/huggingface:ro" \
-e CUDA_VISIBLE_DEVICES=0 \
-e HF_HOME=/root/.cache/huggingface \
-e HF_HUB_OFFLINE=1 \
-e TRANSFORMERS_OFFLINE=1 \
-e RAY_NUM_REPLICAS=1 \
-e RAY_NCPU_PER_REPLICA=4 \
-e RAY_NGPU_PER_REPLICA=1 \
--restart unless-stopped \
$IMAGE_NAME
if [ $? -eq 0 ]; then
print_info "Container started successfully!"
print_info "Server will be available at: http://localhost:$PORT/predict"
else
print_error "Failed to start container."
exit 1
fi
}
# Wait for server to be ready
wait_for_server() {
print_info "Waiting for server to be ready..."
max_attempts=60
attempt=0
while [ $attempt -lt $max_attempts ]; do
if curl -s http://localhost:$PORT/ > /dev/null 2>&1; then
print_info "Server is ready!"
return 0
fi
attempt=$((attempt + 1))
echo -n "."
sleep 1
done
echo ""
print_warn "Server might still be initializing. Check logs with: docker logs -f $CONTAINER_NAME"
}
# Show logs
show_logs() {
print_info "Showing container logs (Ctrl+C to exit)..."
docker logs -f $CONTAINER_NAME
}
# Main deployment workflow
case "${1:-deploy}" in
check)
check_nvidia
check_docker
check_nvidia_docker
check_model
print_info "All checks passed!"
;;
build)
check_docker
build_image
;;
deploy)
check_nvidia
check_docker
check_nvidia_docker
check_model
build_image
stop_container
start_container
wait_for_server
print_info ""
print_info "======================================"
print_info "TexTeller server deployed successfully!"
print_info "======================================"
print_info "API endpoint: http://localhost:$PORT/predict"
print_info ""
print_info "Test the server with:"
print_info " python examples/test_server.py path/to/image.png"
print_info ""
print_info "View logs with:"
print_info " docker logs -f $CONTAINER_NAME"
print_info ""
print_info "Stop the server with:"
print_info " docker stop $CONTAINER_NAME"
;;
start)
if [ "$(docker ps -aq -f name=$CONTAINER_NAME)" ]; then
docker start $CONTAINER_NAME
print_info "Container started."
else
print_error "Container does not exist. Run './deploy.sh deploy' first."
exit 1
fi
;;
stop)
stop_container
print_info "Container stopped."
;;
restart)
docker restart $CONTAINER_NAME
print_info "Container restarted."
;;
logs)
show_logs
;;
status)
if [ "$(docker ps -q -f name=$CONTAINER_NAME)" ]; then
print_info "Container is running."
docker stats --no-stream $CONTAINER_NAME
else
print_warn "Container is not running."
fi
;;
clean)
stop_container
print_info "Removing Docker image..."
docker rmi $IMAGE_NAME 2>/dev/null || true
print_info "Cleanup complete."
;;
*)
echo "Usage: $0 {check|build|deploy|start|stop|restart|logs|status|clean}"
echo ""
echo "Commands:"
echo " check - Check system requirements"
echo " build - Build Docker image only"
echo " deploy - Full deployment (build + start)"
echo " start - Start existing container"
echo " stop - Stop container"
echo " restart - Restart container"
echo " logs - Show container logs"
echo " status - Show container status"
echo " clean - Remove container and image"
exit 1
;;
esac

38
docker-compose.yml Normal file
View File

@@ -0,0 +1,38 @@
version: '3.8'
services:
texteller:
build:
context: .
dockerfile: Dockerfile
container_name: texteller-server
runtime: nvidia
environment:
- NVIDIA_VISIBLE_DEVICES=all
- NVIDIA_DRIVER_CAPABILITIES=compute,utility
- CUDA_VISIBLE_DEVICES=0
# Ray Serve configuration
- RAY_NUM_REPLICAS=1
- RAY_NCPU_PER_REPLICA=4
- RAY_NGPU_PER_REPLICA=1
ports:
- "8001:8001"
volumes:
# Mount the model cache directory to avoid downloading models
- ~/.cache/huggingface/hub/models--OleehyO--TexTeller:/root/.cache/huggingface/hub/models--OleehyO--TexTeller:ro
deploy:
resources:
reservations:
devices:
- driver: nvidia
device_ids: ['0'] # Use first GPU (RTX 5080)
capabilities: [gpu]
restart: unless-stopped
command: ["texteller", "launch", "server", "-p", "8001"]
healthcheck:
test: ["CMD", "python3", "-c", "import requests; requests.get('http://localhost:8001/', timeout=5)"]
interval: 30s
timeout: 10s
retries: 3
start_period: 60s

77
examples/test_server.py Normal file
View File

@@ -0,0 +1,77 @@
#!/usr/bin/env python3
"""
Example client script to test the TexTeller server API.
"""
import requests
import base64
import sys
from pathlib import Path
def test_base64_request(image_path: str, server_url: str = "http://localhost:8001/predict"):
"""Test the server with a base64-encoded image."""
# Read and encode the image
with open(image_path, "rb") as f:
image_data = f.read()
image_base64 = base64.b64encode(image_data).decode()
# Send request
response = requests.post(server_url, json={"image_base64": image_base64}, headers={"Content-Type": "application/json"})
# Print result
if response.status_code == 200:
result = response.json()
print(f"✓ Success!")
print(f"Result: {result.get('result', 'N/A')}")
return result
else:
print(f"✗ Error: {response.status_code}")
print(f"Response: {response.text}")
return None
def test_url_request(image_url: str, server_url: str = "http://localhost:8001/predict"):
"""Test the server with an image URL."""
# Send request
response = requests.post(server_url, json={"image_url": image_url}, headers={"Content-Type": "application/json"})
# Print result
if response.status_code == 200:
result = response.json()
print(f"✓ Success!")
print(f"Result: {result.get('result', 'N/A')}")
return result
else:
print(f"✗ Error: {response.status_code}")
print(f"Response: {response.text}")
return None
if __name__ == "__main__":
print("=" * 50)
print("TexTeller Server API Test")
print("=" * 50)
# Test with local image if provided
if len(sys.argv) > 1:
image_path = sys.argv[1]
if Path(image_path).exists():
print(f"\nTest 1: Base64 request with local image")
print(f"Image: {image_path}")
test_base64_request(image_path)
else:
print(f"Error: Image file not found: {image_path}")
# Test with URL if provided
if len(sys.argv) > 2:
image_url = sys.argv[2]
print(f"\nTest 2: URL request")
print(f"URL: {image_url}")
test_url_request(image_url)
if len(sys.argv) == 1:
print("\nUsage:")
print(f" python {sys.argv[0]} <image_path> [image_url]")
print("\nExamples:")
print(f" python {sys.argv[0]} equation.png")
print(f" python {sys.argv[0]} equation.png https://example.com/formula.png")

View File

@@ -31,7 +31,7 @@ from texteller.utils import get_device
"-p",
"--port",
type=int,
default=8000,
default=8001,
help="Port to run the server on",
)
@click.option(

View File

@@ -1,7 +1,11 @@
import numpy as np
import cv2
import base64
import requests
from io import BytesIO
from starlette.requests import Request
from starlette.responses import JSONResponse
from ray import serve
from ray.serve.handle import DeploymentHandle
@@ -57,13 +61,42 @@ class Ingress:
def __init__(self, rec_server: DeploymentHandle) -> None:
self.texteller_server = rec_server
async def __call__(self, request: Request) -> str:
form = await request.form()
img_rb = await form["img"].read()
async def __call__(self, request: Request):
try:
# Parse JSON body
body = await request.json()
img_nparray = np.frombuffer(img_rb, np.uint8)
# Get image data from either base64 or URL
if "image_base64" in body:
# Decode base64 image
image_data = body["image_base64"]
# Remove data URL prefix if present (e.g., "data:image/png;base64,")
if "," in image_data:
image_data = image_data.split(",", 1)[1]
img_bytes = base64.b64decode(image_data)
img_nparray = np.frombuffer(img_bytes, np.uint8)
elif "image_url" in body:
# Download image from URL
image_url = body["image_url"]
response = requests.get(image_url, timeout=30)
response.raise_for_status()
img_bytes = response.content
img_nparray = np.frombuffer(img_bytes, np.uint8)
else:
return JSONResponse({"error": "Either 'image_base64' or 'image_url' must be provided"}, status_code=400)
# Decode and convert image
img_nparray = cv2.imdecode(img_nparray, cv2.IMREAD_COLOR)
if img_nparray is None:
return JSONResponse({"error": "Failed to decode image"}, status_code=400)
img_nparray = cv2.cvtColor(img_nparray, cv2.COLOR_BGR2RGB)
# Get prediction
pred = await self.texteller_server.predict.remote(img_nparray)
return pred
return JSONResponse({"result": pred})
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)