import copy import cv2 import numpy as np def decode_image(img_path): if isinstance(img_path, str): with open(img_path, "rb") as f: im_read = f.read() data = np.frombuffer(im_read, dtype="uint8") else: assert isinstance(img_path, np.ndarray) data = img_path im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) img_info = { "im_shape": np.array(im.shape[:2], dtype=np.float32), "scale_factor": np.array([1.0, 1.0], dtype=np.float32), } return im, img_info class Resize(object): """resize image by target_size and max_size Args: target_size (int): the target size of image keep_ratio (bool): whether keep_ratio or not, default true interp (int): method of resize """ def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR): if isinstance(target_size, int): target_size = [target_size, target_size] self.target_size = target_size self.keep_ratio = keep_ratio self.interp = interp def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) im = cv2.resize(im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info["im_shape"] = np.array(im.shape[:2]).astype("float32") im_info["scale_factor"] = np.array([im_scale_y, im_scale_x]).astype("float32") return im, im_info def generate_scale(self, im): """ Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ origin_shape = im.shape[:2] im_c = im.shape[2] if self.keep_ratio: im_size_min = np.min(origin_shape) im_size_max = np.max(origin_shape) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = float(target_size_min) / float(im_size_min) if np.round(im_scale * im_size_max) > target_size_max: im_scale = float(target_size_max) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x class NormalizeImage(object): """normalize image Args: mean (list): im - mean std (list): im / std is_scale (bool): whether need im / 255 norm_type (str): type in ['mean_std', 'none'] """ def __init__(self, mean, std, is_scale=True, norm_type="mean_std"): self.mean = mean self.std = std self.is_scale = is_scale self.norm_type = norm_type def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.astype(np.float32, copy=False) if self.is_scale: scale = 1.0 / 255.0 im *= scale if self.norm_type == "mean_std": mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] im -= mean im /= std return im, im_info class Permute(object): """permute image Args: to_bgr (bool): whether convert RGB to BGR channel_first (bool): whether convert HWC to CHW """ def __init__( self, ): super(Permute, self).__init__() def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.transpose((2, 0, 1)).copy() return im, im_info class Compose: def __init__(self, transforms): self.transforms = [] for op_info in transforms: new_op_info = op_info.copy() op_type = new_op_info.pop("type") self.transforms.append(eval(op_type)(**new_op_info)) def __call__(self, img_path): img, im_info = decode_image(img_path) for t in self.transforms: img, im_info = t(img, im_info) inputs = copy.deepcopy(im_info) inputs["image"] = img return inputs