📄 English | 中文

𝚃𝚎𝚡𝚃𝚎𝚕𝚕𝚎𝚛

🤗 Hugging Face

https://github.com/OleehyO/TexTeller/assets/56267907/fb17af43-f2a5-47ce-ad1d-101db5fd7fbb TexTeller是一个基于ViT的端到端公式识别模型,可以把图片转换为对应的latex公式 TexTeller用了~~550K~~7.5M的图片-公式对进行训练(数据集可以在[这里](https://huggingface.co/datasets/OleehyO/latex-formulas)获取),相比于[LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)(使用了一个100K的数据集),TexTeller具有**更强的泛化能力**以及**更高的准确率**,可以覆盖大部分的使用场景(**扫描图片,手写公式除外**)。 > ~~我们马上就会发布一个使用7.5M数据集进行训练的TexTeller checkpoint~~ ## 🔄 变更信息 * 📮[2024-03-25] TexTeller2.0发布!TexTeller2.0的训练数据增大到了7.5M(相较于TexTeller1.0**增加了~15倍**并且数据质量也有所改善)。训练后的TexTeller2.0在测试集中展现出了**更加优越的性能**,尤其在生僻符号、复杂多行、矩阵的识别场景中。 > 在[这里](./test.pdf)有更多的测试图片以及各家识别模型的横向对比。 ## 🔑 前置条件 python=3.10 [pytorch](https://pytorch.org/get-started/locally/) > [!WARNING] > 只有CUDA版本>= 12.0被完全测试过,所以最好使用>= 12.0的CUDA版本 ## 🖼 关于把latex渲染成图片 * **安装XeLaTex** 并确保`xelatex`可以直接被命令行调用。 * 为了确保正确渲染预测出的公式, 需要在`.tex`文件中**引入以下宏包**: ```tex \usepackage{multirow,multicol,amsmath,amsfonts,amssymb,mathtools,bm,mathrsfs,wasysym,amsbsy,upgreek,mathalfa,stmaryrd,mathrsfs,dsfont,amsthm,amsmath,multirow} ``` ## 🚀 开搞 1. 克隆本仓库: ```bash git clone https://github.com/OleehyO/TexTeller ``` 2. [安装pytorch](https://pytorch.org/get-started/locally/#start-locally)后,再安装本项目的依赖包: ```bash pip install -r requirements.txt ``` 3. 进入`TexTeller/src`目录,在终端运行以下命令进行推理: ```bash python inference.py -img "/path/to/image.{jpg,png}" # use -cuda option to enable GPU inference #+e.g. python inference.py -img "./img.jpg" -cuda ``` > [!NOTE] > 第一次运行时会在hugging face上下载所需要的checkpoints ## ❓ 常见问题:无法连接到Hugging Face 默认情况下,会在Hugging Face中下载模型权重,**如果你的远端服务器无法连接到Hugging Face**,你可以通过以下命令进行加载: 1. 安装huggingface hub包 ```bash pip install -U "huggingface_hub[cli]" ``` 2. 在能连接Hugging Face的机器上下载模型权重: ```bash huggingface-cli download OleehyO/TexTeller --include "*.json" "*.bin" "*.txt" --repo-type model --local-dir "your/dir/path" ``` 3. 把包含权重的目录上传远端服务器,然后把`TexTeller/src/models/ocr_model/model/TexTeller.py`中的`REPO_NAME = 'OleehyO/TexTeller'`修改为`REPO_NAME = 'your/dir/path'` 如果你还想在训练模型时开启evaluate,你需要提前下载metric脚本并上传远端服务器: 1. 在能连接Hugging Face的机器上下载metric脚本 ```bash huggingface-cli download evaluate-metric/google_bleu --repo-type space --local-dir "your/dir/path" ``` 2. 把这个目录上传远端服务器,并在`TexTeller/src/models/ocr_model/utils/metrics.py`中把`evaluate.load('google_bleu')`改为`evaluate.load('your/dir/path/google_bleu.py')` ## 🌐 网页演示 首先**确保[poppler](https://poppler.freedesktop.org/)被正确安装,并添加到`PATH`路径中**(终端可以直接使用`pdftoppm`命令)。 然后进入 `TexTeller/src` 目录,运行以下命令 ```bash ./start_web.sh ``` 在浏览器里输入`http://localhost:8501`就可以看到web demo > [!TIP] > 你可以改变`start_web.sh`的默认配置, 例如使用GPU进行推理(e.g. `USE_CUDA=True`) 或者增加beams的数量(e.g. `NUM_BEAM=3`)来获得更高的精确度 > [!IMPORTANT] > 如果你想直接把预测结果在网页上渲染成图片(比如为了检查预测结果是否正确)你需要确保[xelatex被正确安装](https://github.com/OleehyO/TexTeller/blob/main/assets/README_zh.md#-%E5%85%B3%E4%BA%8E%E6%8A%8Alatex%E6%B8%B2%E6%9F%93%E6%88%90%E5%9B%BE%E7%89%87) ## 📡 API调用 我们使用[ray serve](https://github.com/ray-project/ray)来对外提供一个TexTeller的API接口,通过使用这个接口,你可以把TexTeller整合到自己的项目里。要想启动server,你需要先进入`TexTeller/src`目录然后运行以下命令: ```bash python server.py # default settings ``` 你可以给`server.py`传递以下参数来改变server的推理设置(e.g. `python server.py --use_gpu` 来启动GPU推理): | 参数 | 描述 | | --- | --- | | `-ckpt` | 权重文件的路径,*默认为TexTeller的预训练权重*。| | `-tknz` | 分词器的路径, *默认为TexTeller的分词器*。| | `-port` | 服务器的服务端口, *默认是8000*。 | | `--use_gpu` | 是否使用GPU推理,*默认为CPU*。 | | `--num_beams` | beam search的beam数量, *默认是1*。 | | `--num_replicas` | 在服务器上运行的服务副本数量, *默认1个副本*。你可以使用更多的副本来获取更大的吞吐量。| | `--ncpu_per_replica` | 每个服务副本所用的CPU核心数,*默认为1*。 | | `--ngpu_per_replica` | 每个服务副本所用的GPU数量,*默认为1*。你可以把这个值设置成 0~1之间的数,这样会在一个GPU上运行多个服务副本来共享GPU,从而提高GPU的利用率。(注意,如果 --num_replicas 2, --ngpu_per_replica 0.7, 那么就必须要有2个GPU可用) | > [!NOTE] > 一个客户端demo可以在`TexTeller/client/demo.py`找到,你可以参考`demo.py`来给server发送请求 ## 🏋️‍♂️ 训练 ### 数据集 我们在`TexTeller/src/models/ocr_model/train/dataset`目录中提供了一个数据集的例子,你可以把自己的图片放在`images`目录然后在`formulas.jsonl`中为每张图片标注对应的公式。 准备好数据集后,你需要在`.../dataset/loader.py`中把 **`DIR_URL`变量改成你自己数据集的路径** ### 重新训练分词器 如果你使用了不一样的数据集,你可能需要重新训练tokenizer来得到一个不一样的字典。配置好数据集后,可以通过以下命令来训练自己的tokenizer: 1. 在`TexTeller/src/models/tokenizer/train.py`中,修改`new_tokenizer.save_pretrained('./your_dir_name')`为你自定义的输出目录 > 注意:如果要用一个不一样大小的字典(默认1W个token),你需要在 `TexTeller/src/models/globals.py`中修改`VOCAB_SIZE`变量 2. **在 `TexTeller/src` 目录下**运行以下命令: ```bash python -m models.tokenizer.train ``` ### 训练模型 要想训练模型, 你需要在`TexTeller/src`目录下运行以下命令: ```bash python -m models.ocr_model.train.train ``` 你可以在`TexTeller/src/models/ocr_model/train/train.py`中设置自己的tokenizer和checkpoint路径(请参考`train.py`)。如果你使用了与TexTeller一样的架构和相同的字典,你还可以用自己的数据集来微调TexTeller的默认权重。 在`TexTeller/src/globals.py`和`TexTeller/src/models/ocr_model/train/train_args.py`中,你可以改变模型的架构以及训练的超参数。 > [!NOTE] > 我们的训练脚本使用了[Hugging Face Transformers](https://github.com/huggingface/transformers)库, 所以你可以参考他们提供的[文档](https://huggingface.co/docs/transformers/v4.32.1/main_classes/trainer#transformers.TrainingArguments)来获取更多训练参数的细节以及配置。 ## 🚧 不足 * 不支持扫描图片以及PDF文档识别 * 不支持手写体公式 ## 📅 计划 - [x] ~~使用更大的数据集来训练模型(7.5M样本,即将发布)~~ - [ ] 扫描图片识别 - [ ] PDF文档识别 + 中英文场景支持 - [ ] 推理加速 - [ ] ... ## 💖 感谢 Thanks to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) which has brought me a lot of inspiration, and [im2latex-100K](https://zenodo.org/records/56198#.V2px0jXT6eA) which enriches our dataset. ## ⭐️ 观星曲线 [![Stargazers over time](https://starchart.cc/OleehyO/TexTeller.svg?variant=adaptive)](https://starchart.cc/OleehyO/TexTeller)