import torch import random import numpy as np import cv2 from torchvision.transforms import v2 from typing import Any from PIL import Image from collections import Counter from texteller.constants import ( IMG_CHANNELS, MAX_RESIZE_RATIO, MIN_RESIZE_RATIO, ) from texteller.utils import transform as inference_transform from .augraphy_pipe import get_custom_augraphy augraphy_pipeline = get_custom_augraphy() def trim_white_border(image: np.ndarray): if len(image.shape) != 3 or image.shape[2] != 3: raise ValueError("Image is not in RGB format or channel is not in third dimension") if image.dtype != np.uint8: raise ValueError(f"Image should stored in uint8") corners = [tuple(image[0, 0]), tuple(image[0, -1]), tuple(image[-1, 0]), tuple(image[-1, -1])] bg_color = Counter(corners).most_common(1)[0][0] bg_color_np = np.array(bg_color, dtype=np.uint8) h, w = image.shape[:2] bg = np.full((h, w, 3), bg_color_np, dtype=np.uint8) diff = cv2.absdiff(image, bg) mask = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY) threshold = 15 _, diff = cv2.threshold(mask, threshold, 255, cv2.THRESH_BINARY) x, y, w, h = cv2.boundingRect(diff) trimmed_image = image[y : y + h, x : x + w] return trimmed_image def add_white_border(image: np.ndarray, max_size: int) -> np.ndarray: randi = [random.randint(0, max_size) for _ in range(4)] pad_height_size = randi[1] + randi[3] pad_width_size = randi[0] + randi[2] if pad_height_size + image.shape[0] < 30: compensate_height = int((30 - (pad_height_size + image.shape[0])) * 0.5) + 1 randi[1] += compensate_height randi[3] += compensate_height if pad_width_size + image.shape[1] < 30: compensate_width = int((30 - (pad_width_size + image.shape[1])) * 0.5) + 1 randi[0] += compensate_width randi[2] += compensate_width return v2.functional.pad( torch.from_numpy(image).permute(2, 0, 1), padding=randi, padding_mode="constant", fill=(255, 255, 255), ) def padding(images: list[torch.Tensor], required_size: int) -> list[torch.Tensor]: images = [ v2.functional.pad( img, padding=[0, 0, required_size - img.shape[2], required_size - img.shape[1]] ) for img in images ] return images def random_resize(images: list[np.ndarray], minr: float, maxr: float) -> list[np.ndarray]: if len(images[0].shape) != 3 or images[0].shape[2] != 3: raise ValueError("Image is not in RGB format or channel is not in third dimension") ratios = [random.uniform(minr, maxr) for _ in range(len(images))] return [ # Anti-aliasing cv2.resize( img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LANCZOS4 ) for img, r in zip(images, ratios) ] def rotate(image: np.ndarray, min_angle: int, max_angle: int) -> np.ndarray: # Get the center of the image to define the point of rotation image_center = tuple(np.array(image.shape[1::-1]) / 2) # Generate a random angle within the specified range angle = random.randint(min_angle, max_angle) # Get the rotation matrix for rotating the image around its center rotation_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0) # Determine the size of the rotated image cos = np.abs(rotation_mat[0, 0]) sin = np.abs(rotation_mat[0, 1]) new_width = int((image.shape[0] * sin) + (image.shape[1] * cos)) new_height = int((image.shape[0] * cos) + (image.shape[1] * sin)) # Adjust the rotation matrix to take into account translation rotation_mat[0, 2] += (new_width / 2) - image_center[0] rotation_mat[1, 2] += (new_height / 2) - image_center[1] # Rotate the image with the specified border color (white in this case) rotated_image = cv2.warpAffine( image, rotation_mat, (new_width, new_height), borderValue=(255, 255, 255) ) return rotated_image def ocr_aug(image: np.ndarray) -> np.ndarray: if random.random() < 0.2: image = rotate(image, -5, 5) image = add_white_border(image, max_size=25).permute(1, 2, 0).numpy() image = augraphy_pipeline(image) return image def train_transform(images: list[Image.Image]) -> list[torch.Tensor]: assert IMG_CHANNELS == 1, "Only support grayscale images for now" images = [np.array(img.convert("RGB")) for img in images] # random resize first images = random_resize(images, MIN_RESIZE_RATIO, MAX_RESIZE_RATIO) images = [trim_white_border(image) for image in images] # OCR augmentation images = [ocr_aug(image) for image in images] # general transform pipeline images = inference_transform(images) return images def img_train_transform(samples: dict[str, list[Any]]) -> dict[str, list[Any]]: processed_img = train_transform(samples["pixel_values"]) samples["pixel_values"] = processed_img return samples def img_inf_transform(samples: dict[str, list[Any]]) -> dict[str, list[Any]]: processed_img = inference_transform(samples["pixel_values"]) samples["pixel_values"] = processed_img return samples