import os import time import yaml import numpy as np import cv2 from tqdm import tqdm from typing import List from .preprocess import Compose from .Bbox import Bbox # Global dictionary SUPPORT_MODELS = { 'YOLO', 'PPYOLOE', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet', 'S2ANet', 'JDE', 'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet', 'TOOD', 'RetinaNet', 'StrongBaseline', 'STGCN', 'YOLOX', 'HRNet', 'DETR', } class PredictConfig(object): """set config of preprocess, postprocess and visualize Args: infer_config (str): path of infer_cfg.yml """ def __init__(self, infer_config): # parsing Yaml config for Preprocess with open(infer_config) as f: yml_conf = yaml.safe_load(f) self.check_model(yml_conf) self.arch = yml_conf['arch'] self.preprocess_infos = yml_conf['Preprocess'] self.min_subgraph_size = yml_conf['min_subgraph_size'] self.label_list = yml_conf['label_list'] self.use_dynamic_shape = yml_conf['use_dynamic_shape'] self.draw_threshold = yml_conf.get("draw_threshold", 0.5) self.mask = yml_conf.get("mask", False) self.tracker = yml_conf.get("tracker", None) self.nms = yml_conf.get("NMS", None) self.fpn_stride = yml_conf.get("fpn_stride", None) color_pool = [(0, 255, 0), (255, 0, 0), (0, 0, 255), (255, 255, 0), (0, 255, 255)] self.colors = { label: color_pool[i % len(color_pool)] for i, label in enumerate(self.label_list) } if self.arch == 'RCNN' and yml_conf.get('export_onnx', False): print('The RCNN export model is used for ONNX and it only supports batch_size = 1') self.print_config() def check_model(self, yml_conf): """ Raises: ValueError: loaded model not in supported model type """ for support_model in SUPPORT_MODELS: if support_model in yml_conf['arch']: return True raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf['arch'], SUPPORT_MODELS)) def print_config(self): print('----------- Model Configuration -----------') print('%s: %s' % ('Model Arch', self.arch)) print('%s: ' % ('Transform Order')) for op_info in self.preprocess_infos: print('--%s: %s' % ('transform op', op_info['type'])) print('--------------------------------------------') def draw_bbox(image, outputs, infer_config): for output in outputs: cls_id, score, xmin, ymin, xmax, ymax = output if score > infer_config.draw_threshold: label = infer_config.label_list[int(cls_id)] color = infer_config.colors[label] cv2.rectangle(image, (int(xmin), int(ymin)), (int(xmax), int(ymax)), color, 2) cv2.putText( image, "{}: {:.2f}".format(label, score), (int(xmin), int(ymin - 5)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2, ) return image def predict_image(imgsave_dir, infer_config, predictor, img_list): # load preprocess transforms transforms = Compose(infer_config.preprocess_infos) errImgList = [] # Check and create subimg_save_dir if not exist subimg_save_dir = os.path.join(imgsave_dir, 'subimages') os.makedirs(subimg_save_dir, exist_ok=True) first_image_skipped = False total_time = 0 num_images = 0 # predict image for img_path in tqdm(img_list): img = cv2.imread(img_path) if img is None: print(f"Warning: Could not read image {img_path}. Skipping...") errImgList.append(img_path) continue inputs = transforms(img_path) inputs_name = [var.name for var in predictor.get_inputs()] inputs = {k: inputs[k][None,] for k in inputs_name} # Start timing start_time = time.time() outputs = predictor.run(output_names=None, input_feed=inputs) # Stop timing end_time = time.time() inference_time = end_time - start_time if not first_image_skipped: first_image_skipped = True else: total_time += inference_time num_images += 1 print( f"ONNXRuntime predict time for {os.path.basename(img_path)}: {inference_time:.4f} seconds" ) print("ONNXRuntime predict: ") if infer_config.arch in ["HRNet"]: print(np.array(outputs[0])) else: bboxes = np.array(outputs[0]) for bbox in bboxes: if bbox[0] > -1 and bbox[1] > infer_config.draw_threshold: print(f"{int(bbox[0])} {bbox[1]} " f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}") # Save the subimages (crop from the original image) subimg_counter = 1 for output in np.array(outputs[0]): cls_id, score, xmin, ymin, xmax, ymax = output if score > infer_config.draw_threshold: label = infer_config.label_list[int(cls_id)] subimg = img[int(max(ymin, 0)) : int(ymax), int(max(xmin, 0)) : int(xmax)] if len(subimg) == 0: continue subimg_filename = f"{os.path.splitext(os.path.basename(img_path))[0]}_{label}_{xmin:.2f}_{ymin:.2f}_{xmax:.2f}_{ymax:.2f}.jpg" subimg_path = os.path.join(subimg_save_dir, subimg_filename) cv2.imwrite(subimg_path, subimg) subimg_counter += 1 # Draw bounding boxes and save the image with bounding boxes img_with_mask = img.copy() for output in np.array(outputs[0]): cls_id, score, xmin, ymin, xmax, ymax = output if score > infer_config.draw_threshold: cv2.rectangle( img_with_mask, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (255, 255, 255), -1, ) # 盖白 img_with_bbox = draw_bbox(img, np.array(outputs[0]), infer_config) output_dir = imgsave_dir os.makedirs(output_dir, exist_ok=True) draw_box_dir = os.path.join(output_dir, 'draw_box') mask_white_dir = os.path.join(output_dir, 'mask_white') os.makedirs(draw_box_dir, exist_ok=True) os.makedirs(mask_white_dir, exist_ok=True) output_file_mask = os.path.join(mask_white_dir, os.path.basename(img_path)) output_file_bbox = os.path.join(draw_box_dir, os.path.basename(img_path)) cv2.imwrite(output_file_mask, img_with_mask) cv2.imwrite(output_file_bbox, img_with_bbox) avg_time_per_image = total_time / num_images if num_images > 0 else 0 print(f"Total inference time for {num_images} images: {total_time:.4f} seconds") print(f"Average time per image: {avg_time_per_image:.4f} seconds") print("ErrorImgs:") print(errImgList) def predict(img_path: str, predictor, infer_config) -> List[Bbox]: transforms = Compose(infer_config.preprocess_infos) inputs = transforms(img_path) inputs_name = [var.name for var in predictor.get_inputs()] inputs = {k: inputs[k][None,] for k in inputs_name} outputs = predictor.run(output_names=None, input_feed=inputs)[0] res = [] for output in outputs: cls_name = infer_config.label_list[int(output[0])] score = output[1] xmin = int(max(output[2], 0)) ymin = int(max(output[3], 0)) xmax = int(output[4]) ymax = int(output[5]) if score > infer_config.draw_threshold: res.append(Bbox(xmin, ymin, ymax - ymin, xmax - xmin, cls_name, score)) return res