278 lines
10 KiB
Python
Executable File
278 lines
10 KiB
Python
Executable File
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
|
|
os.environ["FLAGS_allocator_strategy"] = "auto_growth"
|
|
|
|
import time
|
|
|
|
import numpy as np
|
|
|
|
from .DBPostProcess import DBPostProcess
|
|
from .operators import DetResizeForTest, KeepKeys, NormalizeImage, ToCHWImage
|
|
from .utility import create_predictor, get_logger
|
|
|
|
|
|
def transform(data, ops=None):
|
|
"""transform"""
|
|
if ops is None:
|
|
ops = []
|
|
for op in ops:
|
|
data = op(data)
|
|
if data is None:
|
|
return None
|
|
return data
|
|
|
|
|
|
logger = get_logger()
|
|
|
|
|
|
class TextDetector(object):
|
|
def __init__(self, args):
|
|
self.args = args
|
|
self.det_algorithm = args.det_algorithm
|
|
self.use_onnx = args.use_onnx
|
|
postprocess_params = {}
|
|
assert self.det_algorithm == "DB"
|
|
postprocess_params["name"] = "DBPostProcess"
|
|
postprocess_params["thresh"] = args.det_db_thresh
|
|
postprocess_params["box_thresh"] = args.det_db_box_thresh
|
|
postprocess_params["max_candidates"] = 1000
|
|
postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
|
|
postprocess_params["use_dilation"] = args.use_dilation
|
|
postprocess_params["score_mode"] = args.det_db_score_mode
|
|
postprocess_params["box_type"] = args.det_box_type
|
|
|
|
self.preprocess_op = [
|
|
DetResizeForTest(
|
|
limit_side_len=args.det_limit_side_len, limit_type=args.det_limit_type
|
|
),
|
|
NormalizeImage(
|
|
std=[0.229, 0.224, 0.225],
|
|
mean=[0.485, 0.456, 0.406],
|
|
scale=1.0 / 255.0,
|
|
order="hwc",
|
|
),
|
|
ToCHWImage(),
|
|
KeepKeys(keep_keys=["image", "shape"]),
|
|
]
|
|
self.postprocess_op = DBPostProcess(**postprocess_params)
|
|
(
|
|
self.predictor,
|
|
self.input_tensor,
|
|
self.output_tensors,
|
|
self.config,
|
|
) = create_predictor(args, "det", logger)
|
|
|
|
assert self.use_onnx
|
|
if self.use_onnx:
|
|
img_h, img_w = self.input_tensor.shape[2:]
|
|
if isinstance(img_h, str) or isinstance(img_w, str):
|
|
pass
|
|
elif img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
|
|
self.preprocess_op[0] = DetResizeForTest(image_shape=[img_h, img_w])
|
|
|
|
def order_points_clockwise(self, pts):
|
|
rect = np.zeros((4, 2), dtype="float32")
|
|
s = pts.sum(axis=1)
|
|
rect[0] = pts[np.argmin(s)]
|
|
rect[2] = pts[np.argmax(s)]
|
|
tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
|
|
diff = np.diff(np.array(tmp), axis=1)
|
|
rect[1] = tmp[np.argmin(diff)]
|
|
rect[3] = tmp[np.argmax(diff)]
|
|
return rect
|
|
|
|
def clip_det_res(self, points, img_height, img_width):
|
|
for pno in range(points.shape[0]):
|
|
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
|
|
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
|
|
return points
|
|
|
|
def filter_tag_det_res(self, dt_boxes, image_shape):
|
|
img_height, img_width = image_shape[0:2]
|
|
dt_boxes_new = []
|
|
for box in dt_boxes:
|
|
if type(box) is list:
|
|
box = np.array(box)
|
|
box = self.order_points_clockwise(box)
|
|
box = self.clip_det_res(box, img_height, img_width)
|
|
rect_width = int(np.linalg.norm(box[0] - box[1]))
|
|
rect_height = int(np.linalg.norm(box[0] - box[3]))
|
|
if rect_width <= 3 or rect_height <= 3:
|
|
continue
|
|
dt_boxes_new.append(box)
|
|
dt_boxes = np.array(dt_boxes_new)
|
|
return dt_boxes
|
|
|
|
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
|
|
img_height, img_width = image_shape[0:2]
|
|
dt_boxes_new = []
|
|
for box in dt_boxes:
|
|
if type(box) is list:
|
|
box = np.array(box)
|
|
box = self.clip_det_res(box, img_height, img_width)
|
|
dt_boxes_new.append(box)
|
|
dt_boxes = np.array(dt_boxes_new)
|
|
return dt_boxes
|
|
|
|
def predict(self, img):
|
|
ori_im = img.copy()
|
|
data = {"image": img}
|
|
|
|
st = time.time()
|
|
|
|
if self.args.benchmark:
|
|
self.autolog.times.start()
|
|
|
|
data = transform(data, self.preprocess_op)
|
|
img, shape_list = data
|
|
if img is None:
|
|
return None, 0
|
|
img = np.expand_dims(img, axis=0)
|
|
shape_list = np.expand_dims(shape_list, axis=0)
|
|
img = img.copy()
|
|
|
|
if self.args.benchmark:
|
|
self.autolog.times.stamp()
|
|
if self.use_onnx:
|
|
input_dict = {}
|
|
input_dict[self.input_tensor.name] = img
|
|
outputs = self.predictor.run(self.output_tensors, input_dict)
|
|
else:
|
|
self.input_tensor.copy_from_cpu(img)
|
|
self.predictor.run()
|
|
outputs = []
|
|
for output_tensor in self.output_tensors:
|
|
output = output_tensor.copy_to_cpu()
|
|
outputs.append(output)
|
|
if self.args.benchmark:
|
|
self.autolog.times.stamp()
|
|
|
|
preds = {}
|
|
if self.det_algorithm == "EAST":
|
|
preds["f_geo"] = outputs[0]
|
|
preds["f_score"] = outputs[1]
|
|
elif self.det_algorithm == "SAST":
|
|
preds["f_border"] = outputs[0]
|
|
preds["f_score"] = outputs[1]
|
|
preds["f_tco"] = outputs[2]
|
|
preds["f_tvo"] = outputs[3]
|
|
elif self.det_algorithm in ["DB", "PSE", "DB++"]:
|
|
preds["maps"] = outputs[0]
|
|
elif self.det_algorithm == "FCE":
|
|
for i, output in enumerate(outputs):
|
|
preds["level_{}".format(i)] = output
|
|
elif self.det_algorithm == "CT":
|
|
preds["maps"] = outputs[0]
|
|
preds["score"] = outputs[1]
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
post_result = self.postprocess_op(preds, shape_list)
|
|
dt_boxes = post_result[0]["points"]
|
|
|
|
if self.args.det_box_type == "poly":
|
|
dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
|
|
else:
|
|
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
|
|
|
|
if self.args.benchmark:
|
|
self.autolog.times.end(stamp=True)
|
|
et = time.time()
|
|
return dt_boxes, et - st
|
|
|
|
def __call__(self, img):
|
|
# For image like poster with one side much greater than the other side,
|
|
# splitting recursively and processing with overlap to enhance performance.
|
|
MIN_BOUND_DISTANCE = 50
|
|
dt_boxes = np.zeros((0, 4, 2), dtype=np.float32)
|
|
elapse = 0
|
|
if img.shape[0] / img.shape[1] > 2 and img.shape[0] > self.args.det_limit_side_len:
|
|
start_h = 0
|
|
end_h = 0
|
|
while end_h <= img.shape[0]:
|
|
end_h = start_h + img.shape[1] * 3 // 4
|
|
subimg = img[start_h:end_h, :]
|
|
if len(subimg) == 0:
|
|
break
|
|
sub_dt_boxes, sub_elapse = self.predict(subimg)
|
|
offset = start_h
|
|
# To prevent text blocks from being cut off, roll back a certain buffer area.
|
|
if (
|
|
len(sub_dt_boxes) == 0
|
|
or img.shape[1] - max([x[-1][1] for x in sub_dt_boxes]) > MIN_BOUND_DISTANCE
|
|
):
|
|
start_h = end_h
|
|
else:
|
|
sorted_indices = np.argsort(sub_dt_boxes[:, 2, 1])
|
|
sub_dt_boxes = sub_dt_boxes[sorted_indices]
|
|
bottom_line = (
|
|
0 if len(sub_dt_boxes) <= 1 else int(np.max(sub_dt_boxes[:-1, 2, 1]))
|
|
)
|
|
if bottom_line > 0:
|
|
start_h += bottom_line
|
|
sub_dt_boxes = sub_dt_boxes[sub_dt_boxes[:, 2, 1] <= bottom_line]
|
|
else:
|
|
start_h = end_h
|
|
if len(sub_dt_boxes) > 0:
|
|
if dt_boxes.shape[0] == 0:
|
|
dt_boxes = sub_dt_boxes + np.array([0, offset], dtype=np.float32)
|
|
else:
|
|
dt_boxes = np.append(
|
|
dt_boxes,
|
|
sub_dt_boxes + np.array([0, offset], dtype=np.float32),
|
|
axis=0,
|
|
)
|
|
elapse += sub_elapse
|
|
elif img.shape[1] / img.shape[0] > 3 and img.shape[1] > self.args.det_limit_side_len * 3:
|
|
start_w = 0
|
|
end_w = 0
|
|
while end_w <= img.shape[1]:
|
|
end_w = start_w + img.shape[0] * 3 // 4
|
|
subimg = img[:, start_w:end_w]
|
|
if len(subimg) == 0:
|
|
break
|
|
sub_dt_boxes, sub_elapse = self.predict(subimg)
|
|
offset = start_w
|
|
if (
|
|
len(sub_dt_boxes) == 0
|
|
or img.shape[0] - max([x[-1][0] for x in sub_dt_boxes]) > MIN_BOUND_DISTANCE
|
|
):
|
|
start_w = end_w
|
|
else:
|
|
sorted_indices = np.argsort(sub_dt_boxes[:, 2, 0])
|
|
sub_dt_boxes = sub_dt_boxes[sorted_indices]
|
|
right_line = (
|
|
0 if len(sub_dt_boxes) <= 1 else int(np.max(sub_dt_boxes[:-1, 1, 0]))
|
|
)
|
|
if right_line > 0:
|
|
start_w += right_line
|
|
sub_dt_boxes = sub_dt_boxes[sub_dt_boxes[:, 1, 0] <= right_line]
|
|
else:
|
|
start_w = end_w
|
|
if len(sub_dt_boxes) > 0:
|
|
if dt_boxes.shape[0] == 0:
|
|
dt_boxes = sub_dt_boxes + np.array([offset, 0], dtype=np.float32)
|
|
else:
|
|
dt_boxes = np.append(
|
|
dt_boxes,
|
|
sub_dt_boxes + np.array([offset, 0], dtype=np.float32),
|
|
axis=0,
|
|
)
|
|
elapse += sub_elapse
|
|
else:
|
|
dt_boxes, elapse = self.predict(img)
|
|
return dt_boxes, elapse
|