Files
TexTeller/texteller/models/ocr_model/model/TexTeller.py

44 lines
1.8 KiB
Python

from pathlib import Path
from ...globals import VOCAB_SIZE, FIXED_IMG_SIZE, IMG_CHANNELS, MAX_TOKEN_SIZE
from transformers import RobertaTokenizerFast, VisionEncoderDecoderModel, VisionEncoderDecoderConfig
class TexTeller(VisionEncoderDecoderModel):
REPO_NAME = 'OleehyO/TexTeller'
def __init__(self):
config = VisionEncoderDecoderConfig.from_pretrained(
Path(__file__).resolve().parent / "config.json"
)
config.encoder.image_size = FIXED_IMG_SIZE
config.encoder.num_channels = IMG_CHANNELS
config.decoder.vocab_size = VOCAB_SIZE
config.decoder.max_position_embeddings = MAX_TOKEN_SIZE
super().__init__(config=config)
@classmethod
def from_pretrained(cls, model_path: str = None, use_onnx=False, onnx_provider=None):
if model_path is None or model_path == 'default':
if not use_onnx:
return VisionEncoderDecoderModel.from_pretrained(cls.REPO_NAME)
else:
from optimum.onnxruntime import ORTModelForVision2Seq
use_gpu = True if onnx_provider == 'cuda' else False
return ORTModelForVision2Seq.from_pretrained(
cls.REPO_NAME,
provider="CUDAExecutionProvider" if use_gpu else "CPUExecutionProvider",
)
model_path = Path(model_path).resolve()
return VisionEncoderDecoderModel.from_pretrained(str(model_path))
@classmethod
def get_tokenizer(cls, tokenizer_path: str = None) -> RobertaTokenizerFast:
if tokenizer_path is None or tokenizer_path == 'default':
return RobertaTokenizerFast.from_pretrained(cls.REPO_NAME)
tokenizer_path = Path(tokenizer_path).resolve()
return RobertaTokenizerFast.from_pretrained(str(tokenizer_path))