273 lines
8.7 KiB
Python
273 lines
8.7 KiB
Python
import os
|
||
import io
|
||
import re
|
||
import base64
|
||
import tempfile
|
||
import shutil
|
||
import streamlit as st
|
||
|
||
from PIL import Image
|
||
from streamlit_paste_button import paste_image_button as pbutton
|
||
from onnxruntime import InferenceSession
|
||
from models.thrid_party.paddleocr.infer import predict_det, predict_rec
|
||
from models.thrid_party.paddleocr.infer import utility
|
||
|
||
from models.utils import mix_inference
|
||
from models.det_model.inference import PredictConfig
|
||
|
||
from models.ocr_model.model.TexTeller import TexTeller
|
||
from models.ocr_model.utils.inference import inference as latex_recognition
|
||
from models.ocr_model.utils.to_katex import to_katex
|
||
|
||
|
||
st.set_page_config(
|
||
page_title="TexTeller",
|
||
page_icon="🧮"
|
||
)
|
||
|
||
html_string = '''
|
||
<h1 style="color: black; text-align: center;">
|
||
<img src="https://raw.githubusercontent.com/OleehyO/TexTeller/main/assets/fire.svg" width="100">
|
||
𝚃𝚎𝚡𝚃𝚎𝚕𝚕𝚎𝚛
|
||
<img src="https://raw.githubusercontent.com/OleehyO/TexTeller/main/assets/fire.svg" width="100">
|
||
</h1>
|
||
'''
|
||
|
||
suc_gif_html = '''
|
||
<h1 style="color: black; text-align: center;">
|
||
<img src="https://slackmojis.com/emojis/90621-clapclap-e/download" width="50">
|
||
<img src="https://slackmojis.com/emojis/90621-clapclap-e/download" width="50">
|
||
<img src="https://slackmojis.com/emojis/90621-clapclap-e/download" width="50">
|
||
</h1>
|
||
'''
|
||
|
||
fail_gif_html = '''
|
||
<h1 style="color: black; text-align: center;">
|
||
<img src="https://slackmojis.com/emojis/51439-allthethings_intensifies/download" >
|
||
<img src="https://slackmojis.com/emojis/51439-allthethings_intensifies/download" >
|
||
<img src="https://slackmojis.com/emojis/51439-allthethings_intensifies/download" >
|
||
</h1>
|
||
'''
|
||
|
||
@st.cache_resource
|
||
def get_texteller(use_onnx, accelerator):
|
||
return TexTeller.from_pretrained(os.environ['CHECKPOINT_DIR'], use_onnx=use_onnx, onnx_provider=accelerator)
|
||
|
||
@st.cache_resource
|
||
def get_tokenizer():
|
||
return TexTeller.get_tokenizer(os.environ['TOKENIZER_DIR'])
|
||
|
||
@st.cache_resource
|
||
def get_det_models(accelerator):
|
||
infer_config = PredictConfig("./models/det_model/model/infer_cfg.yml")
|
||
latex_det_model = InferenceSession(
|
||
"./models/det_model/model/rtdetr_r50vd_6x_coco.onnx",
|
||
providers=['CUDAExecutionProvider'] if accelerator == 'cuda' else ['CPUExecutionProvider']
|
||
)
|
||
return infer_config, latex_det_model
|
||
|
||
@st.cache_resource()
|
||
def get_ocr_models(accelerator):
|
||
use_gpu = accelerator == 'cuda'
|
||
|
||
SIZE_LIMIT = 20 * 1024 * 1024
|
||
det_model_dir = "./models/thrid_party/paddleocr/checkpoints/det/default_model.onnx"
|
||
rec_model_dir = "./models/thrid_party/paddleocr/checkpoints/rec/default_model.onnx"
|
||
# The CPU inference of the detection model will be faster than the GPU inference (in onnxruntime)
|
||
det_use_gpu = False
|
||
rec_use_gpu = use_gpu and not (os.path.getsize(rec_model_dir) < SIZE_LIMIT)
|
||
|
||
paddleocr_args = utility.parse_args()
|
||
paddleocr_args.use_onnx = True
|
||
paddleocr_args.det_model_dir = det_model_dir
|
||
paddleocr_args.rec_model_dir = rec_model_dir
|
||
|
||
paddleocr_args.use_gpu = det_use_gpu
|
||
detector = predict_det.TextDetector(paddleocr_args)
|
||
paddleocr_args.use_gpu = rec_use_gpu
|
||
recognizer = predict_rec.TextRecognizer(paddleocr_args)
|
||
return [detector, recognizer]
|
||
|
||
|
||
def get_image_base64(img_file):
|
||
buffered = io.BytesIO()
|
||
img_file.seek(0)
|
||
img = Image.open(img_file)
|
||
img.save(buffered, format="PNG")
|
||
return base64.b64encode(buffered.getvalue()).decode()
|
||
|
||
def on_file_upload():
|
||
st.session_state["UPLOADED_FILE_CHANGED"] = True
|
||
|
||
def change_side_bar():
|
||
st.session_state["CHANGE_SIDEBAR_FLAG"] = True
|
||
|
||
if "start" not in st.session_state:
|
||
st.session_state["start"] = 1
|
||
st.toast('Hooray!', icon='🎉')
|
||
|
||
if "UPLOADED_FILE_CHANGED" not in st.session_state:
|
||
st.session_state["UPLOADED_FILE_CHANGED"] = False
|
||
|
||
if "CHANGE_SIDEBAR_FLAG" not in st.session_state:
|
||
st.session_state["CHANGE_SIDEBAR_FLAG"] = False
|
||
|
||
if "INF_MODE" not in st.session_state:
|
||
st.session_state["INF_MODE"] = "Formula recognition"
|
||
|
||
|
||
############################## <sidebar> ##############################
|
||
|
||
with st.sidebar:
|
||
num_beams = 1
|
||
|
||
st.markdown("# 🔨️ Config")
|
||
st.markdown("")
|
||
|
||
inf_mode = st.selectbox(
|
||
"Inference mode",
|
||
("Formula recognition", "Paragraph recognition"),
|
||
on_change=change_side_bar
|
||
)
|
||
|
||
num_beams = st.number_input(
|
||
'Number of beams',
|
||
min_value=1,
|
||
max_value=20,
|
||
step=1,
|
||
on_change=change_side_bar
|
||
)
|
||
|
||
accelerator = st.radio(
|
||
"Accelerator",
|
||
("cpu", "cuda", "mps"),
|
||
on_change=change_side_bar
|
||
)
|
||
|
||
st.markdown("## Seedup")
|
||
use_onnx = st.toggle("ONNX Runtime ")
|
||
|
||
|
||
|
||
############################## </sidebar> ##############################
|
||
|
||
|
||
################################ <page> ################################
|
||
|
||
texteller = get_texteller(use_onnx, accelerator)
|
||
tokenizer = get_tokenizer()
|
||
latex_rec_models = [texteller, tokenizer]
|
||
|
||
if inf_mode == "Paragraph recognition":
|
||
infer_config, latex_det_model = get_det_models(accelerator)
|
||
lang_ocr_models = get_ocr_models(accelerator)
|
||
|
||
st.markdown(html_string, unsafe_allow_html=True)
|
||
|
||
uploaded_file = st.file_uploader(
|
||
" ",
|
||
type=['jpg', 'png'],
|
||
on_change=on_file_upload
|
||
)
|
||
|
||
paste_result = pbutton(
|
||
label="📋 Paste an image",
|
||
background_color="#5BBCFF",
|
||
hover_background_color="#3498db",
|
||
)
|
||
st.write("")
|
||
|
||
if st.session_state["CHANGE_SIDEBAR_FLAG"] == True:
|
||
st.session_state["CHANGE_SIDEBAR_FLAG"] = False
|
||
elif uploaded_file or paste_result.image_data is not None:
|
||
if st.session_state["UPLOADED_FILE_CHANGED"] == False and paste_result.image_data is not None:
|
||
uploaded_file = io.BytesIO()
|
||
paste_result.image_data.save(uploaded_file, format='PNG')
|
||
uploaded_file.seek(0)
|
||
|
||
if st.session_state["UPLOADED_FILE_CHANGED"] == True:
|
||
st.session_state["UPLOADED_FILE_CHANGED"] = False
|
||
|
||
img = Image.open(uploaded_file)
|
||
|
||
temp_dir = tempfile.mkdtemp()
|
||
png_file_path = os.path.join(temp_dir, 'image.png')
|
||
img.save(png_file_path, 'PNG')
|
||
|
||
with st.container(height=300):
|
||
img_base64 = get_image_base64(uploaded_file)
|
||
|
||
st.markdown(f"""
|
||
<style>
|
||
.centered-container {{
|
||
text-align: center;
|
||
}}
|
||
.centered-image {{
|
||
display: block;
|
||
margin-left: auto;
|
||
margin-right: auto;
|
||
max-height: 350px;
|
||
max-width: 100%;
|
||
}}
|
||
</style>
|
||
<div class="centered-container">
|
||
<img src="data:image/png;base64,{img_base64}" class="centered-image" alt="Input image">
|
||
</div>
|
||
""", unsafe_allow_html=True)
|
||
st.markdown(f"""
|
||
<style>
|
||
.centered-container {{
|
||
text-align: center;
|
||
}}
|
||
</style>
|
||
<div class="centered-container">
|
||
<p style="color:gray;">Input image ({img.height}✖️{img.width})</p>
|
||
</div>
|
||
""", unsafe_allow_html=True)
|
||
|
||
st.write("")
|
||
|
||
with st.spinner("Predicting..."):
|
||
if inf_mode == "Formula recognition":
|
||
TexTeller_result = latex_recognition(
|
||
texteller,
|
||
tokenizer,
|
||
[png_file_path],
|
||
accelerator=accelerator,
|
||
num_beams=num_beams
|
||
)[0]
|
||
katex_res = to_katex(TexTeller_result)
|
||
else:
|
||
katex_res = mix_inference(png_file_path, infer_config, latex_det_model, lang_ocr_models, latex_rec_models, accelerator, num_beams)
|
||
|
||
st.success('Completed!', icon="✅")
|
||
st.markdown(suc_gif_html, unsafe_allow_html=True)
|
||
st.text_area(":blue[*** 𝑃r𝑒d𝑖c𝑡e𝑑 𝑓o𝑟m𝑢l𝑎 ***]", katex_res, height=150)
|
||
|
||
if inf_mode == "Formula recognition":
|
||
st.latex(katex_res)
|
||
elif inf_mode == "Paragraph recognition":
|
||
mixed_res = re.split(r'(\$\$.*?\$\$)', katex_res)
|
||
for text in mixed_res:
|
||
if text.startswith('$$') and text.endswith('$$'):
|
||
st.latex(text[2:-2])
|
||
else:
|
||
st.markdown(text)
|
||
|
||
st.write("")
|
||
st.write("")
|
||
|
||
with st.expander(":star2: :gray[Tips for better results]"):
|
||
st.markdown('''
|
||
* :mag_right: Use a clear and high-resolution image.
|
||
* :scissors: Crop images as accurately as possible.
|
||
* :jigsaw: Split large multi line formulas into smaller ones.
|
||
* :page_facing_up: Use images with **white background and black text** as much as possible.
|
||
* :book: Use a font with good readability.
|
||
''')
|
||
shutil.rmtree(temp_dir)
|
||
|
||
paste_result.image_data = None
|
||
|
||
################################ </page> ################################
|