14741 lines
94 KiB
Plaintext
14741 lines
94 KiB
Plaintext
#version: 0.2
|
|
_ {
|
|
^ {
|
|
} \
|
|
m a
|
|
t h
|
|
ma th
|
|
} ^{
|
|
} (
|
|
\ [
|
|
r a
|
|
i g
|
|
} )
|
|
, \
|
|
i n
|
|
l e
|
|
} _{
|
|
t a
|
|
Ġ \
|
|
{ \
|
|
a l
|
|
m e
|
|
f ra
|
|
} }
|
|
\ ]
|
|
fra c
|
|
\[ \
|
|
math b
|
|
a r
|
|
_{ \
|
|
f t
|
|
t i
|
|
( \
|
|
ig h
|
|
d e
|
|
r igh
|
|
= \
|
|
} {
|
|
e ta
|
|
p h
|
|
a m
|
|
le ft
|
|
righ t
|
|
) \
|
|
} }\
|
|
^{ \
|
|
- \
|
|
}( \
|
|
c al
|
|
math cal
|
|
+ \
|
|
s i
|
|
r i
|
|
} ,\
|
|
. \]
|
|
l o
|
|
mathb b
|
|
s u
|
|
| \
|
|
o t
|
|
d ot
|
|
}^{ \
|
|
r m
|
|
p ri
|
|
pri me
|
|
p si
|
|
mathb f
|
|
}\ ]
|
|
le q
|
|
} ,
|
|
ph a
|
|
al pha
|
|
t o
|
|
d a
|
|
am b
|
|
amb da
|
|
math rm
|
|
v ar
|
|
n a
|
|
lo n
|
|
l a
|
|
}) \
|
|
b ig
|
|
su m
|
|
l ta
|
|
l ambda
|
|
}_{ \
|
|
psi lon
|
|
am ma
|
|
e psilon
|
|
e x
|
|
} +
|
|
g a
|
|
me ga
|
|
n g
|
|
b o
|
|
ph i
|
|
in t
|
|
ti l
|
|
til de
|
|
ig ma
|
|
q u
|
|
} -
|
|
c dot
|
|
ng le
|
|
ex t
|
|
t ext
|
|
m u
|
|
a d
|
|
o p
|
|
p ar
|
|
qu ad
|
|
bo l
|
|
ti al
|
|
par tial
|
|
b m
|
|
b eta
|
|
ti me
|
|
time s
|
|
^{ -
|
|
e r
|
|
th eta
|
|
l l
|
|
e q
|
|
a t
|
|
g amma
|
|
s igma
|
|
} =
|
|
h at
|
|
| _{
|
|
{ (
|
|
} +\
|
|
h o
|
|
} =\
|
|
ft y
|
|
in fty
|
|
ta u
|
|
to r
|
|
l in
|
|
e ra
|
|
Ġ &
|
|
lin e
|
|
era tor
|
|
op erator
|
|
na me
|
|
operator name
|
|
de lta
|
|
var epsilon
|
|
r ho
|
|
w i
|
|
,\ ]
|
|
} {\
|
|
b ar
|
|
n d
|
|
p i
|
|
wi de
|
|
) \]
|
|
) ^{
|
|
x i
|
|
} .\]
|
|
}} {
|
|
s e
|
|
} -\
|
|
b la
|
|
) }\
|
|
na bla
|
|
B ig
|
|
e ll
|
|
} |
|
|
a p
|
|
d s
|
|
} }(
|
|
v er
|
|
e g
|
|
O mega
|
|
o mega
|
|
r o
|
|
math s
|
|
s q
|
|
Ġ 0
|
|
) =\
|
|
e nd
|
|
b eg
|
|
beg in
|
|
o ver
|
|
dot s
|
|
g eq
|
|
r t
|
|
sq rt
|
|
h i
|
|
) =
|
|
}) \]
|
|
} }^{
|
|
| ^{
|
|
[ \
|
|
ra ngle
|
|
var phi
|
|
n u
|
|
over line
|
|
y m
|
|
Ġ \[
|
|
la ngle
|
|
l i
|
|
D e
|
|
math fra
|
|
mathfra k
|
|
ym bol
|
|
bol ds
|
|
bolds ymbol
|
|
De lta
|
|
^{ *
|
|
Ġ 1
|
|
Ġ \[\
|
|
l dots
|
|
se t
|
|
{ )
|
|
},\ ]
|
|
& \
|
|
o times
|
|
ta r
|
|
c o
|
|
wide tilde
|
|
} ]
|
|
}^{ (
|
|
Ġ {
|
|
\ |
|
|
t ri
|
|
maths f
|
|
G amma
|
|
lo g
|
|
} :
|
|
ra y
|
|
p a
|
|
}^{ -
|
|
\ |_{
|
|
Ġ x
|
|
Ġ C
|
|
}^{ *
|
|
ma tri
|
|
matri x
|
|
Ġ 2
|
|
ro w
|
|
) )
|
|
}}\ ]
|
|
wide hat
|
|
m in
|
|
q quad
|
|
\ \
|
|
}\ ,
|
|
{( }\
|
|
}} {\
|
|
k ap
|
|
kap pa
|
|
} }(\
|
|
Ġ i
|
|
}) ^{
|
|
) .\]
|
|
; \
|
|
P hi
|
|
cdot s
|
|
r c
|
|
\ {
|
|
Ġ f
|
|
li m
|
|
Ġ }
|
|
u s
|
|
o r
|
|
) -
|
|
tar row
|
|
\ ,
|
|
Ġ t
|
|
z eta
|
|
} }_{
|
|
c i
|
|
c ap
|
|
} })
|
|
^{ (
|
|
Ġ a
|
|
ci rc
|
|
Ġ }\
|
|
u n
|
|
L ambda
|
|
{ |
|
|
) ,\
|
|
}\ |
|
|
) +
|
|
c hi
|
|
) ,
|
|
big g
|
|
si m
|
|
Ġ =\
|
|
Ġ n
|
|
) }
|
|
righ tarrow
|
|
v e
|
|
de r
|
|
Ġ u
|
|
un der
|
|
}) =
|
|
\ |\
|
|
Ġ =
|
|
{( }
|
|
n t
|
|
s la
|
|
c u
|
|
}\ |_{
|
|
} |\
|
|
ar ray
|
|
}) =\
|
|
] \
|
|
su p
|
|
S igma
|
|
p ro
|
|
} [
|
|
Ġ d
|
|
) (
|
|
) }{
|
|
ma x
|
|
su b
|
|
cu p
|
|
r e
|
|
c a
|
|
Ġ _{
|
|
}\ \
|
|
: =\
|
|
}\ ,\
|
|
sub set
|
|
Ġ\ \
|
|
sla nt
|
|
) +\
|
|
\[ (
|
|
c r
|
|
) -\
|
|
e d
|
|
\ {\
|
|
ca se
|
|
case s
|
|
} /
|
|
maths cr
|
|
s p
|
|
under line
|
|
) ,\]
|
|
Ġ L
|
|
{ )}\
|
|
d x
|
|
) ^{\
|
|
p matrix
|
|
Ġ k
|
|
g e
|
|
c k
|
|
Ġ (
|
|
pro d
|
|
i j
|
|
li t
|
|
i d
|
|
} &
|
|
to p
|
|
Ġ A
|
|
Ġ B
|
|
< \
|
|
Ġ c
|
|
}} ,\
|
|
sp lit
|
|
^{ -\
|
|
d i
|
|
p m
|
|
} }^{\
|
|
P si
|
|
s s
|
|
Ġ s
|
|
i t
|
|
Ġ S
|
|
! \
|
|
Ġ T
|
|
Ġ\ (
|
|
_{ *
|
|
Ġ e
|
|
Ġ H
|
|
. \
|
|
Ġ\[ =
|
|
b f
|
|
1 2
|
|
) )\
|
|
Ġ v
|
|
bo x
|
|
}} .\]
|
|
Ġ p
|
|
) }(
|
|
leq slant
|
|
ed ge
|
|
f o
|
|
}) }\
|
|
w edge
|
|
\ ,\
|
|
co lon
|
|
ra ll
|
|
fo rall
|
|
}) .\]
|
|
ex p
|
|
{ [
|
|
n eq
|
|
Ġ\[ =\
|
|
l us
|
|
_{ -
|
|
}) -
|
|
. .
|
|
}} +\
|
|
s tar
|
|
) |
|
|
ve c
|
|
le ss
|
|
Ġ N
|
|
}} =\
|
|
less sim
|
|
op lus
|
|
o m
|
|
min us
|
|
}} }\
|
|
}| ^{
|
|
su bar
|
|
subar ray
|
|
Ġ X
|
|
Ġ I
|
|
}) ,\
|
|
set minus
|
|
m id
|
|
0 0
|
|
_{ (
|
|
}\ |\
|
|
{ ]
|
|
Ġ M
|
|
u l
|
|
( -
|
|
b matrix
|
|
}^{ +
|
|
)\ ,
|
|
Ġ y
|
|
}: =\
|
|
d t
|
|
}) _{
|
|
Ġ {\
|
|
s in
|
|
b ul
|
|
} [\
|
|
) _{
|
|
/ \
|
|
Ġ r
|
|
P i
|
|
\ }\]
|
|
Ġ m
|
|
Ġ V
|
|
}} =
|
|
s t
|
|
T h
|
|
Ġ j
|
|
} &\
|
|
Ġ E
|
|
Ġ R
|
|
: \
|
|
}) +
|
|
h line
|
|
Ġ D
|
|
\[ (\
|
|
Th eta
|
|
Ġ F
|
|
\[\ |
|
|
}} ,
|
|
1 1
|
|
co s
|
|
lim it
|
|
] \]
|
|
}} +
|
|
}) (
|
|
limit s
|
|
} })\
|
|
Ġ -
|
|
}) -\
|
|
1 0
|
|
}) ^{\
|
|
}) ,
|
|
m box
|
|
) }{\
|
|
Ġ P
|
|
_{ +
|
|
Ġ h
|
|
i f
|
|
}) +\
|
|
\ )
|
|
Ġ b
|
|
\| _{\
|
|
) ^{-
|
|
{\ |
|
|
Ġ g
|
|
^{ +
|
|
} ;
|
|
Ġ K
|
|
\[ |
|
|
Ġ w
|
|
c c
|
|
Ġ ^{
|
|
\ }\
|
|
t frac
|
|
o n
|
|
Ġ G
|
|
f lo
|
|
flo or
|
|
Ġ z
|
|
) :=\
|
|
} }_{\
|
|
p t
|
|
}} ,\]
|
|
p s
|
|
: =
|
|
}) ,\]
|
|
Ġ 3
|
|
) }\]
|
|
lon g
|
|
s h
|
|
}} -
|
|
}} |
|
|
ma ps
|
|
le t
|
|
maps to
|
|
subset eq
|
|
}} -\
|
|
{| }\
|
|
Ġa nd
|
|
Ġ q
|
|
}} }{
|
|
bul let
|
|
}\ )
|
|
\[\ |\
|
|
l n
|
|
co ng
|
|
c e
|
|
s ta
|
|
re l
|
|
p er
|
|
) |\
|
|
i v
|
|
g g
|
|
{\ {
|
|
}: \
|
|
Ġ U
|
|
Ġ $
|
|
| _{\
|
|
}= (
|
|
}] \
|
|
{) }\]
|
|
b in
|
|
^{* }\
|
|
} ;\
|
|
bin om
|
|
o d
|
|
sta ck
|
|
stack rel
|
|
) )\]
|
|
long rightarrow
|
|
}) }{
|
|
per p
|
|
,\ \
|
|
} >
|
|
Ġ\ (\
|
|
gg er
|
|
da gger
|
|
Ġ W
|
|
f or
|
|
}\ }\]
|
|
{ -
|
|
{[ }\
|
|
\[ |\
|
|
Ġf or
|
|
a nd
|
|
,\ ,
|
|
}) )\
|
|
e qu
|
|
t r
|
|
i o
|
|
\ |^{
|
|
( -\
|
|
} ^
|
|
equ iv
|
|
ve e
|
|
io ta
|
|
Ġ& \
|
|
{) }
|
|
in f
|
|
Ġ (\
|
|
}\ |^{
|
|
}( -
|
|
\ }.\]
|
|
Ġ 4
|
|
)\ |_{
|
|
eq q
|
|
1 6
|
|
colon eqq
|
|
var theta
|
|
b ra
|
|
) ]
|
|
c h
|
|
}_{ +
|
|
}) ^{-
|
|
}) }
|
|
t t
|
|
, -
|
|
1 3
|
|
i l
|
|
.. .
|
|
}\| _{\
|
|
) |^{
|
|
d y
|
|
}}\ ,
|
|
}^{* }\
|
|
( (
|
|
Ġ Q
|
|
R e
|
|
)\ ,\
|
|
} })\]
|
|
di m
|
|
Ġ J
|
|
}+ (
|
|
} <
|
|
Ġ Y
|
|
Big g
|
|
) /
|
|
) (\
|
|
Ġ -\
|
|
}{ (
|
|
) }(\
|
|
}} }
|
|
) }_{
|
|
^{* }
|
|
}: =
|
|
de t
|
|
2 2
|
|
}) |
|
|
var rho
|
|
x rightarrow
|
|
}) )\]
|
|
{) }^{
|
|
+ |
|
|
}{ |
|
|
me q
|
|
si meq
|
|
)\ \
|
|
^{* }(
|
|
* *
|
|
Ġ al
|
|
) }^{
|
|
}/ \
|
|
) },\
|
|
] }\
|
|
tri a
|
|
- (
|
|
}^{ (\
|
|
}} {(
|
|
{ {\
|
|
+ (
|
|
math ds
|
|
},\ \
|
|
a b
|
|
\[\ {
|
|
Ġ l
|
|
big cup
|
|
Ġ in
|
|
Ġal l
|
|
Ġ }(
|
|
}} |\
|
|
}_{ (
|
|
})\ ,
|
|
geq slant
|
|
}}^{ (
|
|
l floor
|
|
Ġ o
|
|
Ġ Z
|
|
= (
|
|
) }=\
|
|
r floor
|
|
2 1
|
|
T r
|
|
}}\ |
|
|
Ġ\[ +\
|
|
} _
|
|
] _{
|
|
b le
|
|
n ot
|
|
)= (
|
|
} <\
|
|
v dots
|
|
}) }{\
|
|
] ^{
|
|
o l
|
|
) }.\]
|
|
> \
|
|
Ġ +
|
|
, (
|
|
2 3
|
|
e t
|
|
}=\ {
|
|
}) }\]
|
|
] .\]
|
|
2 4
|
|
Ġ _{\
|
|
1 4
|
|
& -
|
|
di v
|
|
,\ ,\
|
|
}( (
|
|
math tt
|
|
_{ [
|
|
}] \]
|
|
ar p
|
|
e m
|
|
} .\
|
|
1 5
|
|
\[ [
|
|
bul ar
|
|
ta bular
|
|
Ġ ^{\
|
|
} |_{
|
|
big r
|
|
b a
|
|
big l
|
|
}) (\
|
|
2 0
|
|
H om
|
|
ta ble
|
|
Ġ }^{
|
|
{[ }
|
|
) }=
|
|
Ġi f
|
|
}\ }\
|
|
( |
|
|
{ (\
|
|
}}\ ,\
|
|
) _{\
|
|
}}^{ -
|
|
in g
|
|
}\, .\]
|
|
}) _{\
|
|
Ġ +\
|
|
{) }.\]
|
|
}^{* }
|
|
}= -\
|
|
) },
|
|
}( [
|
|
X i
|
|
Ġi s
|
|
_{ -\
|
|
) :=
|
|
\[ =\
|
|
) )^{
|
|
\ !\
|
|
) }+\
|
|
| ^{\
|
|
Ġ 5
|
|
pro x
|
|
^{ (\
|
|
\[ =
|
|
{ {
|
|
}_{ -
|
|
| \]
|
|
), (
|
|
) &
|
|
}^{ -\
|
|
\ },\]
|
|
tria ngle
|
|
}^{* }(
|
|
... ,
|
|
d z
|
|
k er
|
|
de g
|
|
}) }^{
|
|
}= (\
|
|
sla sh
|
|
}- (
|
|
}} [
|
|
h bar
|
|
}}\ |\
|
|
| }\
|
|
m p
|
|
ba ck
|
|
Ġ }_{
|
|
] =
|
|
}}^{ *
|
|
back slash
|
|
{\{ }\
|
|
Ġ1 0
|
|
}) )
|
|
] =\
|
|
{ }_{
|
|
\[ {\
|
|
pt y
|
|
_{ |
|
|
{| }
|
|
big oplus
|
|
e c
|
|
u t
|
|
em pty
|
|
Ġ |\
|
|
I m
|
|
bra ce
|
|
{ |\
|
|
\[ -\
|
|
) }}\
|
|
empty set
|
|
}} }{\
|
|
Ġ 6
|
|
}_{ *
|
|
ap prox
|
|
| |
|
|
) !
|
|
) )=
|
|
bra ck
|
|
3 2
|
|
brack et
|
|
}) |\
|
|
Ġ O
|
|
x y
|
|
Ġ )\
|
|
}}{ {\
|
|
/ (
|
|
}\ !\
|
|
Ġo f
|
|
under brace
|
|
re f
|
|
i st
|
|
{ }^{\
|
|
}} }(
|
|
sh arp
|
|
Ġ th
|
|
}}\ \
|
|
{] }\
|
|
ti on
|
|
}= -
|
|
},\ ,
|
|
}\ {
|
|
Ġ }{
|
|
2 5
|
|
] ,
|
|
})\ |_{
|
|
ho o
|
|
var pi
|
|
) :
|
|
0 1
|
|
ch e
|
|
a st
|
|
p re
|
|
over set
|
|
\ !
|
|
{\| }\
|
|
Ġ |
|
|
} *
|
|
) )=\
|
|
= -\
|
|
s ma
|
|
}} }\]
|
|
S p
|
|
) }-
|
|
che ck
|
|
) }+
|
|
d u
|
|
] ,\]
|
|
e n
|
|
ar row
|
|
{\{ }
|
|
a s
|
|
})\ \
|
|
sma ll
|
|
j k
|
|
{ =
|
|
] ,\
|
|
a g
|
|
\[\ {\
|
|
1 8
|
|
}( {\
|
|
ar g
|
|
}\, ,\]
|
|
}^{ [
|
|
\, .\]
|
|
U psilon
|
|
}\ }_{
|
|
ex ist
|
|
|\ ,
|
|
i k
|
|
}) :=\
|
|
er t
|
|
( [
|
|
Ġ\[ +
|
|
}) }(
|
|
_{* }\
|
|
d r
|
|
s c
|
|
) })\
|
|
under set
|
|
r r
|
|
exist s
|
|
) }-\
|
|
9 9
|
|
) >
|
|
+ |\
|
|
_{ (\
|
|
^{* }_{
|
|
| =
|
|
}\ !
|
|
pre c
|
|
})\ ,\
|
|
V ert
|
|
lim sup
|
|
wi th
|
|
) &\
|
|
o th
|
|
ig n
|
|
) },\]
|
|
o w
|
|
)) .\]
|
|
}+\ |
|
|
e s
|
|
\ ;
|
|
, &\
|
|
})= (
|
|
m od
|
|
Ġ :=\
|
|
i p
|
|
} })^{
|
|
1 7
|
|
)\ |
|
|
)= -\
|
|
x x
|
|
{\| }_{
|
|
\ },\
|
|
\ }}\
|
|
Ġ }}\
|
|
] }
|
|
}\ ;
|
|
- |
|
|
= -
|
|
d frac
|
|
m n
|
|
rc e
|
|
Ġ }(\
|
|
[ -
|
|
{) },\]
|
|
rce il
|
|
{) }^{\
|
|
3 4
|
|
ce il
|
|
2 7
|
|
}) ]
|
|
l ceil
|
|
ver t
|
|
} $
|
|
( (\
|
|
Ġ 8
|
|
co n
|
|
ow n
|
|
}+\ |\
|
|
Ġ\ ,\
|
|
}] _{
|
|
! }\
|
|
Ġ\ |
|
|
) <
|
|
1 9
|
|
\[ [\
|
|
{] }\]
|
|
ar e
|
|
Ġ [
|
|
3 3
|
|
i i
|
|
}\ ;\
|
|
d own
|
|
^{* }(\
|
|
o dot
|
|
R igh
|
|
Big r
|
|
ta n
|
|
}( |
|
|
Righ tarrow
|
|
small matrix
|
|
Big l
|
|
}) }.\]
|
|
{( }(
|
|
I d
|
|
er e
|
|
)+ (
|
|
},\ ,\
|
|
}] =
|
|
}} &
|
|
)\ )
|
|
}}\ |_{
|
|
di ag
|
|
text bf
|
|
Ġ& =\
|
|
[ (
|
|
6 4
|
|
Ġ **
|
|
i s
|
|
}+ |
|
|
wi se
|
|
di st
|
|
Ġ\ ,
|
|
big cap
|
|
; \]
|
|
}| _{\
|
|
a n
|
|
sup p
|
|
ra l
|
|
}}{ |
|
|
t in
|
|
le f
|
|
)^{ -\
|
|
tin y
|
|
}+ (\
|
|
}, ...,
|
|
bol d
|
|
not in
|
|
bold math
|
|
mu l
|
|
er wise
|
|
^{- (
|
|
4 5
|
|
Ġ 7
|
|
}\ }.\]
|
|
Ġ on
|
|
li min
|
|
sq cup
|
|
limin f
|
|
) })
|
|
{| }_{
|
|
)^{ *
|
|
_{\ {
|
|
Ġd x
|
|
| }
|
|
k l
|
|
) }_{\
|
|
I I
|
|
lef tarrow
|
|
s f
|
|
}}) =\
|
|
2 8
|
|
P r
|
|
* {
|
|
}{ |\
|
|
}\ {\
|
|
d dots
|
|
),\ \
|
|
}, (
|
|
}| }\
|
|
) }}{
|
|
| (
|
|
d v
|
|
Ġ\ |\
|
|
u p
|
|
\, ,\]
|
|
3 0
|
|
3 6
|
|
L o
|
|
di am
|
|
left rightarrow
|
|
\ {(
|
|
p r
|
|
i int
|
|
G L
|
|
}} [\
|
|
_{* }(
|
|
}^{+ }\
|
|
}} &\
|
|
s qu
|
|
C o
|
|
down arrow
|
|
t e
|
|
}) /
|
|
)\ |_{\
|
|
( |\
|
|
c d
|
|
5 6
|
|
\[ -
|
|
)\ }\]
|
|
Ġ 9
|
|
f f
|
|
Ġ\[ -\
|
|
}^{* }(\
|
|
}} :=\
|
|
r l
|
|
!\ !\
|
|
}_{ [
|
|
) }|
|
|
hoo k
|
|
Ġ$ \
|
|
tria ng
|
|
00 0
|
|
)}\ ,
|
|
}}) =
|
|
|\ ,\
|
|
hook rightarrow
|
|
( {\
|
|
triang leq
|
|
^{ [
|
|
}> \
|
|
] (
|
|
4 8
|
|
h ere
|
|
}^{+ }(
|
|
}} }(\
|
|
}( -\
|
|
}| =
|
|
| }{
|
|
4 0
|
|
{) }=\
|
|
) <\
|
|
i m
|
|
x t
|
|
)\ |\
|
|
] +
|
|
{ }^{
|
|
3 5
|
|
(\ |
|
|
lo r
|
|
)\, .\]
|
|
n k
|
|
_{ |\
|
|
a c
|
|
mul ti
|
|
var sigma
|
|
cc cc
|
|
bigg r
|
|
ll bracket
|
|
)= -
|
|
Ġ de
|
|
if f
|
|
| +
|
|
) }}
|
|
{) }=
|
|
}) |^{
|
|
ign ed
|
|
$ \
|
|
lo c
|
|
. }\
|
|
, |
|
|
i c
|
|
int er
|
|
squ are
|
|
pa n
|
|
V ar
|
|
}| |
|
|
al igned
|
|
}] =\
|
|
\ }
|
|
bigg l
|
|
}=\ {\
|
|
}^{ +\
|
|
A B
|
|
h box
|
|
] _{\
|
|
Ġ= -\
|
|
)= (\
|
|
s k
|
|
)}{ (
|
|
sin h
|
|
) ]\
|
|
rr bracket
|
|
L e
|
|
}| \]
|
|
0 2
|
|
^{* },
|
|
cos h
|
|
) :\
|
|
}, &\
|
|
0 5
|
|
_{* }
|
|
, &
|
|
Ġth e
|
|
{\ }}\]
|
|
v ol
|
|
] +\
|
|
* \
|
|
{\ }}.\]
|
|
Ġ }^{\
|
|
) })\]
|
|
= (\
|
|
}}}{ {\
|
|
\ ;\
|
|
}}) .\]
|
|
da sh
|
|
{\| }
|
|
) )}\
|
|
3 1
|
|
| ^{-
|
|
, [
|
|
3 7
|
|
oth erwise
|
|
] ^{\
|
|
}) :
|
|
par row
|
|
}, -
|
|
box times
|
|
)) -
|
|
, *
|
|
u parrow
|
|
}) &
|
|
| -
|
|
)) ,\]
|
|
}} }^{
|
|
{)}\ ,
|
|
eq ref
|
|
# \
|
|
) .\
|
|
Ġ with
|
|
n i
|
|
1 00
|
|
la t
|
|
| +\
|
|
] }(
|
|
{( -
|
|
{) }+\
|
|
+ }\
|
|
Sp ec
|
|
})\ |^{
|
|
}) )^{
|
|
) }^{\
|
|
2 6
|
|
}) )=
|
|
) [
|
|
inter cal
|
|
&\ \
|
|
\ }}
|
|
_{ {}_{
|
|
\ %
|
|
{] }
|
|
) /\
|
|
Ġa n
|
|
}( (\
|
|
{\ }}\
|
|
7 5
|
|
)=\ {
|
|
}) }(\
|
|
}\, ,\
|
|
{| }^{
|
|
0 4
|
|
{= }}\
|
|
}_{\ {
|
|
Ġ co
|
|
)- (
|
|
}}( -
|
|
s g
|
|
}) ).\]
|
|
Ġ= (
|
|
}| ^{\
|
|
Ġ{ -
|
|
}] ^{
|
|
}) )=\
|
|
le l
|
|
cu rl
|
|
}+ |\
|
|
ral lel
|
|
=\ {
|
|
9 6
|
|
pa rallel
|
|
& &
|
|
Lo ng
|
|
^{* })\
|
|
, -\
|
|
D u
|
|
sup set
|
|
) ;
|
|
}} }.\]
|
|
Ġ or
|
|
\[ +\
|
|
su cc
|
|
}), (
|
|
Ġ to
|
|
}) }=\
|
|
Ġ }{\
|
|
c t
|
|
i x
|
|
f lat
|
|
math op
|
|
c l
|
|
r ing
|
|
(\ |\
|
|
pm od
|
|
ra d
|
|
| |\
|
|
}- (\
|
|
Ġ :=
|
|
}} :
|
|
p q
|
|
)) ,\
|
|
, +
|
|
- (\
|
|
\ }^{
|
|
+\ |
|
|
0 3
|
|
l Vert
|
|
)\ |^{
|
|
Ġ },\
|
|
Le ft
|
|
l y
|
|
] )\
|
|
_{+ }(
|
|
Left rightarrow
|
|
r Vert
|
|
Ġ\ {
|
|
}:=\ {
|
|
)\, ,\]
|
|
^{* }}\
|
|
Ġ )
|
|
^{+ }(
|
|
5 0
|
|
Ġ\ |_{
|
|
}, {\
|
|
_{ {\
|
|
2 9
|
|
}) >
|
|
i mp
|
|
u psilon
|
|
+ (\
|
|
}{ }^{
|
|
, (\
|
|
d dot
|
|
math ring
|
|
o nd
|
|
}_{ (\
|
|
, ...,
|
|
B o
|
|
: \,
|
|
E xt
|
|
li es
|
|
) |_{
|
|
| .\]
|
|
^{ {}^{\
|
|
arp o
|
|
hoo se
|
|
u v
|
|
)) -\
|
|
c hoose
|
|
}& =
|
|
b re
|
|
l u
|
|
}}) ^{\
|
|
n o
|
|
A d
|
|
}= [
|
|
}) },\]
|
|
}}) _{
|
|
}| |_{
|
|
. }\]
|
|
s pan
|
|
| =\
|
|
n e
|
|
)) +
|
|
4 4
|
|
}} :\
|
|
3 8
|
|
o ut
|
|
ve n
|
|
Ġ ^{-
|
|
{( }-\
|
|
9 8
|
|
sk ip
|
|
}] .\]
|
|
}) &\
|
|
}) <
|
|
S ym
|
|
m o
|
|
Ġ })\
|
|
{) }+
|
|
od d
|
|
}} ]
|
|
{) }_{
|
|
imp lies
|
|
{\ |\
|
|
ra nk
|
|
ker n
|
|
o me
|
|
_{* }^{
|
|
\, ,\
|
|
})= (\
|
|
| |_{
|
|
M od
|
|
}] }\
|
|
\ }_{
|
|
Bo x
|
|
A ut
|
|
sg n
|
|
}, &
|
|
^{* }_{\
|
|
] {
|
|
l vert
|
|
}| |\
|
|
)) +\
|
|
})+ (
|
|
j i
|
|
G r
|
|
}) :=
|
|
}(\ {
|
|
6 0
|
|
[ -\
|
|
}_{+ }^{
|
|
bre ve
|
|
] -\
|
|
, {\
|
|
}{ (\
|
|
t u
|
|
}( |\
|
|
r vert
|
|
Ġ }_{\
|
|
- |\
|
|
* }\
|
|
or d
|
|
& -\
|
|
Ġ },
|
|
}^{* },\
|
|
}; \]
|
|
)) ^{\
|
|
{( }(\
|
|
)\ ;
|
|
}] (
|
|
}\ },\
|
|
}^{- }(
|
|
}& =\
|
|
})\ }\]
|
|
i r
|
|
}) ]\
|
|
] \\
|
|
}}^{ +
|
|
big wedge
|
|
h skip
|
|
}^{- }\
|
|
}}\, .\]
|
|
o int
|
|
b c
|
|
) ^
|
|
_{+ }\
|
|
) }}{\
|
|
{ -\
|
|
}* \
|
|
w here
|
|
}) :\
|
|
h e
|
|
Ġ }}
|
|
=\ ,\
|
|
{ $
|
|
{) }(
|
|
var kappa
|
|
b b
|
|
g r
|
|
K L
|
|
Ġ\[= -\
|
|
Ġ }+\
|
|
S L
|
|
0 6
|
|
(\ {
|
|
})\ |
|
|
Ġ }-
|
|
} .
|
|
over rightarrow
|
|
{] }.\]
|
|
re s
|
|
z e
|
|
Re s
|
|
}} <\
|
|
de f
|
|
}^{* },
|
|
_{* }(\
|
|
)^{ (
|
|
7 8
|
|
}/ (
|
|
Ġa s
|
|
7 9
|
|
)| \]
|
|
}) }=
|
|
0 8
|
|
7 6
|
|
}{ }_{
|
|
)}\ \
|
|
ec t
|
|
Ġ {(
|
|
Ġ\( (
|
|
)) (
|
|
}} /
|
|
)) _{
|
|
+\ |\
|
|
dx dt
|
|
}\ },\]
|
|
{| }_{\
|
|
}\, (
|
|
prec eq
|
|
lu mn
|
|
^{* }-
|
|
Ġs ome
|
|
e v
|
|
E nd
|
|
)} |\
|
|
}}) (
|
|
v dash
|
|
;\ ;\
|
|
}} |^{
|
|
Ġ\[ -
|
|
Ġ }+
|
|
d V
|
|
}) }+\
|
|
5 5
|
|
{) }-\
|
|
^{+ }_{
|
|
| <
|
|
Ġth at
|
|
{ }_{\
|
|
! }
|
|
}}{ (\
|
|
n eg
|
|
math it
|
|
t s
|
|
! [
|
|
Ġ& +\
|
|
in d
|
|
r u
|
|
})\ |\
|
|
diam ond
|
|
co lumn
|
|
}} },\
|
|
\ }=\
|
|
^{+ }\
|
|
] -
|
|
r times
|
|
multi column
|
|
] ;
|
|
}) /\
|
|
T V
|
|
4 9
|
|
) ;\
|
|
}^{* })\
|
|
long mapsto
|
|
I nd
|
|
^{- }(
|
|
l g
|
|
}) <\
|
|
}) },\
|
|
{) },\
|
|
Ġ& =
|
|
e l
|
|
}| +
|
|
... ,\
|
|
k j
|
|
_{- }(
|
|
}& -
|
|
}| +|
|
|
) ]\]
|
|
\| \]
|
|
}] ,
|
|
}}) }\
|
|
}, (\
|
|
text tt
|
|
3 9
|
|
Ġ /
|
|
}} <
|
|
p th
|
|
| (\
|
|
ar c
|
|
e ss
|
|
))\ ,
|
|
)}\ ,\
|
|
.. .\
|
|
}) ^{*
|
|
Ġ= -
|
|
| )\
|
|
Ġ :\
|
|
Ġ }|
|
|
d W
|
|
})= -\
|
|
Ġan y
|
|
oth ing
|
|
g cd
|
|
{\ }},\]
|
|
\, (
|
|
] }\]
|
|
}}) ,\]
|
|
4 6
|
|
}^{+ }
|
|
var n
|
|
varn othing
|
|
Ġ con
|
|
8 8
|
|
})\, .\]
|
|
}] +
|
|
}=\ {(
|
|
Ġ )^{
|
|
_{+ }^{
|
|
^{+ }}\
|
|
{) }^{-
|
|
) })^{
|
|
, |\
|
|
r k
|
|
]\ !
|
|
n p
|
|
}] ,\
|
|
Ġ *
|
|
}}+\ |
|
|
}\ .\]
|
|
{| }\]
|
|
dx dy
|
|
}),\ \
|
|
Ġd t
|
|
Ġ\[= (
|
|
}}) ,\
|
|
{= }}
|
|
}[ (
|
|
!\ !
|
|
a x
|
|
ge n
|
|
}} >
|
|
tan h
|
|
^{* })
|
|
] }{
|
|
}} }=\
|
|
\| (
|
|
,\ ;
|
|
ij k
|
|
}} }^{\
|
|
}}\ }\]
|
|
}}\ )
|
|
0 7
|
|
)) }{
|
|
{)}\ \
|
|
pro j
|
|
^{* },\
|
|
Ġ su
|
|
{)}\ ,\
|
|
| +|
|
|
V ol
|
|
}^{* }\]
|
|
)| =
|
|
ym p
|
|
S O
|
|
}} ^
|
|
}}^{ (\
|
|
[ (\
|
|
A x
|
|
d w
|
|
bb k
|
|
B bbk
|
|
\ },
|
|
)}\ |_{
|
|
\[\ {(
|
|
: \,\
|
|
ho m
|
|
triangle right
|
|
| }{\
|
|
L ip
|
|
L i
|
|
Ġ }-\
|
|
}] _{\
|
|
)}{ |
|
|
8 0
|
|
}}= (
|
|
}}{ |\
|
|
4 2
|
|
\[ +
|
|
r eg
|
|
}} ]\
|
|
ver y
|
|
| )^{
|
|
r s
|
|
}, -\
|
|
}) ),\]
|
|
) >\
|
|
Ġ re
|
|
)}\ |
|
|
)^{ |
|
|
), &
|
|
| >
|
|
R ic
|
|
] )\]
|
|
text sc
|
|
})\ )
|
|
Ġ{ *
|
|
})=\ {
|
|
Ġ\[ (
|
|
cc c
|
|
mathb in
|
|
}:= (
|
|
7 2
|
|
_{- }\
|
|
g tr
|
|
i math
|
|
_{ [\
|
|
}}^{* }\
|
|
d m
|
|
Ġe very
|
|
})\ |_{\
|
|
9 5
|
|
Ġ odd
|
|
4 3
|
|
}} },\]
|
|
}) [
|
|
})- (
|
|
}_{+ }\
|
|
p e
|
|
}^{* }}\
|
|
}| }{
|
|
de l
|
|
as ymp
|
|
th arpo
|
|
, +\
|
|
}} }+\
|
|
\},\ {
|
|
-\ !
|
|
}^{ {}^{\
|
|
}) ]\]
|
|
gtr sim
|
|
h d
|
|
})}{ (
|
|
}| -
|
|
{- }\
|
|
}) }+
|
|
=\ ,
|
|
4 1
|
|
\ }=
|
|
s ign
|
|
)\ }\
|
|
big vee
|
|
}] ^{\
|
|
{) }-
|
|
}}) -
|
|
}}) ^{-
|
|
Ġe ven
|
|
K er
|
|
h en
|
|
d f
|
|
}^{* }=\
|
|
) }}\]
|
|
n m
|
|
}}}{ {=}}\
|
|
}}) +\
|
|
}{\ |
|
|
}- |
|
|
w p
|
|
^{* }}
|
|
}}) -\
|
|
d R
|
|
e igh
|
|
}{ }^{\
|
|
)& =
|
|
q ed
|
|
bm od
|
|
r n
|
|
_{+ }
|
|
i se
|
|
v box
|
|
)] ^{
|
|
D i
|
|
}, [
|
|
}}) +
|
|
}\ }}\
|
|
)\ !
|
|
no limits
|
|
4 7
|
|
y y
|
|
}}+\ |\
|
|
t w
|
|
}\| \]
|
|
), &\
|
|
Ġ )}\
|
|
s ym
|
|
o nu
|
|
Long rightarrow
|
|
6 6
|
|
}} ;\
|
|
tharpo onu
|
|
tharpoonu p
|
|
}] ,\]
|
|
n n
|
|
)\ }.\]
|
|
)) ,
|
|
; \\
|
|
0 9
|
|
{( }|
|
|
\{ |
|
|
Co v
|
|
\, |\,
|
|
}) .\
|
|
H S
|
|
}\ ,\]
|
|
s o
|
|
X Y
|
|
}}\, ,\]
|
|
w t
|
|
| <\
|
|
{\| }_{\
|
|
ti ve
|
|
}] +\
|
|
Ġ ds
|
|
5 8
|
|
big otimes
|
|
)! }\
|
|
] }(\
|
|
}) )}\
|
|
^{* }}(
|
|
S h
|
|
)_{ +
|
|
{ ,
|
|
}| .\]
|
|
d p
|
|
re d
|
|
}(\ |
|
|
d om
|
|
},\ ;
|
|
{( }-
|
|
)& =\
|
|
^{ |
|
|
}| =\
|
|
}}{\ |
|
|
Ġ1 2
|
|
})= -
|
|
v al
|
|
}} :=
|
|
})^{ -\
|
|
}} }_{
|
|
g rad
|
|
c line
|
|
}) }^{\
|
|
c tion
|
|
Ġ= (\
|
|
12 3
|
|
Long leftrightarrow
|
|
Ġde f
|
|
righ tharpoonup
|
|
}^{* }_{
|
|
}= [\
|
|
\{ -
|
|
}^{+ }(\
|
|
m k
|
|
}{ *
|
|
s m
|
|
] (\
|
|
C S
|
|
} !
|
|
;\ ;
|
|
\ .\]
|
|
\ })\
|
|
7 7
|
|
Ġ\( -
|
|
}& -\
|
|
}| +\
|
|
d g
|
|
Ġ â
|
|
})\, ,\]
|
|
P ro
|
|
Ġ }}{
|
|
)) }{\
|
|
d S
|
|
)} [
|
|
multi row
|
|
m b
|
|
Ġw here
|
|
a v
|
|
t y
|
|
}} .\
|
|
}| (
|
|
}\ }
|
|
+\ !
|
|
S E
|
|
t x
|
|
& (
|
|
ru le
|
|
: (
|
|
i a
|
|
Ġ1 6
|
|
( [\
|
|
t ra
|
|
}\, |\,
|
|
^{+ }
|
|
\[| |
|
|
k i
|
|
g h
|
|
) }}(
|
|
O p
|
|
eigh t
|
|
}}\ |_{\
|
|
e nt
|
|
{] },\]
|
|
}) |_{
|
|
5 4
|
|
)) ^{-
|
|
}}{ {
|
|
}) )_{
|
|
Ġsu ch
|
|
6 8
|
|
,\ {
|
|
e a
|
|
}_{ >
|
|
e ff
|
|
|^{ -\
|
|
}] )\
|
|
)} &
|
|
5 7
|
|
B C
|
|
00 00
|
|
= [
|
|
{(}\ |
|
|
Ġ })
|
|
}} }=
|
|
{- }
|
|
{ {(
|
|
\ (\
|
|
})| \]
|
|
succ eq
|
|
lo w
|
|
)/ (
|
|
}^{* }-
|
|
}}( (
|
|
arg min
|
|
op t
|
|
supset eq
|
|
}}= -\
|
|
) }:=\
|
|
}) }_{
|
|
_{\ {\
|
|
A lg
|
|
Ġ ^{(
|
|
}) ^{*}\
|
|
}| }
|
|
big sqcup
|
|
}] -
|
|
}} ;
|
|
| -\
|
|
9 7
|
|
p o
|
|
}}+ (
|
|
)}\ |\
|
|
}=\ |
|
|
}} /\
|
|
)^{ +
|
|
})\ }_{
|
|
k n
|
|
}( [\
|
|
\[\| (
|
|
}) )-
|
|
j j
|
|
^{\ #
|
|
wi d
|
|
re e
|
|
^{* }+
|
|
pr op
|
|
d d
|
|
$ ,
|
|
i b
|
|
d A
|
|
^{- }\
|
|
\[( -
|
|
)} &\
|
|
})^{ (
|
|
\| (\
|
|
)+ (\
|
|
}: (
|
|
C on
|
|
triangle left
|
|
}} }}\
|
|
Ġ }\,
|
|
{| }\,\
|
|
Pi c
|
|
mo del
|
|
}= {\
|
|
wid th
|
|
c y
|
|
}} ]\]
|
|
}, ...,\
|
|
}}\ {
|
|
C P
|
|
6 7
|
|
}_{\ {\
|
|
}), (\
|
|
u b
|
|
[\ ![
|
|
& =
|
|
)^{* }\
|
|
),\ ,
|
|
}^{* }-\
|
|
5 9
|
|
{(}\ |\
|
|
Ġ( -
|
|
d X
|
|
}}\ !\
|
|
na tu
|
|
|\ !
|
|
_{- }
|
|
ra ise
|
|
i z
|
|
) {\
|
|
}:=\ {\
|
|
| ,\]
|
|
{] }^{
|
|
^{- (\
|
|
& &\
|
|
^{* }=\
|
|
y z
|
|
! (
|
|
B M
|
|
Co h
|
|
)) )\
|
|
[ [
|
|
Ġ [\
|
|
}}= (\
|
|
Ġ1 1
|
|
}= (-
|
|
}| +|\
|
|
natu ral
|
|
Ġde pth
|
|
}) }}\
|
|
Ġ |^{
|
|
\{ -\
|
|
)) )\]
|
|
5 2
|
|
}} }+
|
|
S t
|
|
))\ ,\
|
|
C h
|
|
}\, (\
|
|
e rm
|
|
{\| }^{
|
|
)) }
|
|
b y
|
|
}) )+
|
|
Ġd y
|
|
}} |_{
|
|
Ġ1 4
|
|
\| _
|
|
}) ),\
|
|
- $
|
|
S S
|
|
T M
|
|
}^{ |
|
|
\ (
|
|
):=\ {
|
|
model s
|
|
_{- }^{
|
|
con v
|
|
}}_{ (
|
|
; .\]
|
|
}^{( -
|
|
}},\ \
|
|
}}}{ (
|
|
ĠR e
|
|
{[ }(
|
|
{(} |\
|
|
)\, ,\
|
|
Ġ }}(
|
|
ge ts
|
|
)=\ {\
|
|
v rule
|
|
Ġ2 0
|
|
^{- }_{
|
|
}^{* }=
|
|
) [\
|
|
|\ !\
|
|
M ap
|
|
}] }
|
|
{| }\,
|
|
^{ |\
|
|
}) ^
|
|
}{ }{
|
|
], [
|
|
}(\ |\
|
|
u e
|
|
| ,\
|
|
A C
|
|
\ #
|
|
l k
|
|
a u
|
|
}:= (\
|
|
Ġo th
|
|
}) }\|
|
|
= |
|
|
}_{ {\
|
|
12 8
|
|
)| _{\
|
|
rc l
|
|
6 3
|
|
}) )+\
|
|
})+ (\
|
|
Ġ\ {\
|
|
6 5
|
|
}) )^{\
|
|
}) )-\
|
|
/ (\
|
|
) *
|
|
Ġ width
|
|
9 0
|
|
}}) _{\
|
|
_{* },
|
|
{\ }}
|
|
Ġh eight
|
|
)\ ;\
|
|
}] )\]
|
|
small setminus
|
|
,\ ;\
|
|
Ġ at
|
|
}) }-\
|
|
d n
|
|
), (\
|
|
Ġ se
|
|
}}{ {=}}\
|
|
{$ -$
|
|
}) }-
|
|
}] -\
|
|
}}{\ |\
|
|
}\| (
|
|
d B
|
|
prop to
|
|
5 1
|
|
^{* }\]
|
|
}) )(
|
|
Ġ2 8
|
|
n s
|
|
k k
|
|
}}) ,
|
|
}[\ |\
|
|
i y
|
|
b s
|
|
] ,\\
|
|
| )
|
|
}, |
|
|
^{+ }_{\
|
|
u r
|
|
}- {\
|
|
) $
|
|
}= |
|
|
ĠC h
|
|
-\ !\
|
|
\{ (\
|
|
}^{- }
|
|
6 9
|
|
] \,
|
|
Ġd i
|
|
+ }
|
|
x z
|
|
{] }=\
|
|
\ })\]
|
|
)- (\
|
|
t er
|
|
,\ |
|
|
I n
|
|
{\{ }(
|
|
},\ {
|
|
\ ,\]
|
|
\ }\\
|
|
}\, {\
|
|
] ;\
|
|
^{* })\]
|
|
N R
|
|
8 4
|
|
Ġt r
|
|
}) ;\
|
|
}+ {\
|
|
s l
|
|
}}) )\]
|
|
) }^{(
|
|
}} }-\
|
|
7 0
|
|
=\ {\
|
|
c op
|
|
ol y
|
|
}^{* })^{
|
|
H H
|
|
; (
|
|
Ġ= &\
|
|
Ġ} |\
|
|
}\,\ ,\
|
|
}| <
|
|
ca le
|
|
\, (\
|
|
}{ }_{\
|
|
u u
|
|
_{* }^{\
|
|
C H
|
|
er f
|
|
}}) )\
|
|
8 1
|
|
& =\
|
|
\[( (
|
|
}| ^{-
|
|
}[\ |
|
|
}} },
|
|
}{* }{
|
|
G al
|
|
}^{* }+
|
|
u ph
|
|
on right
|
|
arpo onright
|
|
uph arpoonright
|
|
d k
|
|
5 3
|
|
8 9
|
|
)= (-
|
|
}| >
|
|
Ġoth erwise
|
|
{ }
|
|
}^{* })\]
|
|
j l
|
|
$ }\
|
|
)) }\]
|
|
in it
|
|
}\;\ ;
|
|
F ro
|
|
}[ |
|
|
}}=\ {
|
|
+\ !\
|
|
Ġ=\ {
|
|
8 6
|
|
) })=\
|
|
k m
|
|
| +|\
|
|
}[ (\
|
|
}=\ |\
|
|
u nd
|
|
] }{\
|
|
rn er
|
|
k h
|
|
},\ ;\
|
|
)] =
|
|
}\, |
|
|
}) >\
|
|
b ot
|
|
Ġd iv
|
|
E x
|
|
^{* *
|
|
}_{+ }(
|
|
raise box
|
|
co rner
|
|
] ^{-
|
|
Ġ <
|
|
}_{ -\
|
|
)] =\
|
|
}[ -
|
|
Re p
|
|
& *
|
|
2 00
|
|
\[| |\
|
|
& &\\
|
|
}}\ |^{
|
|
}} }-
|
|
\ }}\]
|
|
. \\
|
|
a ch
|
|
) })_{
|
|
in v
|
|
| }\]
|
|
)\ .\]
|
|
}_{ |
|
|
N N
|
|
Bigg r
|
|
}}^{* }
|
|
$ }.\]
|
|
}; \\
|
|
pa ce
|
|
w hen
|
|
Ġ& -\
|
|
}] (\
|
|
\ _
|
|
c ot
|
|
),\ ,\
|
|
)= [
|
|
}}\ !
|
|
P S
|
|
d h
|
|
f g
|
|
) })=
|
|
m i
|
|
})- (\
|
|
R S
|
|
}}) (\
|
|
}) [\
|
|
Ġ\[= (\
|
|
a ngle
|
|
}\!\ !\
|
|
b d
|
|
)) (\
|
|
)| =\
|
|
^{* })^{
|
|
}]\ !
|
|
ĠC e
|
|
Ġ un
|
|
Ġ\[= -
|
|
_{+ }(\
|
|
7 4
|
|
a cu
|
|
ta b
|
|
)| }\
|
|
8 5
|
|
}^{+ }}\
|
|
Ġi j
|
|
{] }=
|
|
\| =\
|
|
=\ !\
|
|
r hd
|
|
# \{
|
|
[\ |\
|
|
+ (-
|
|
}^{+ },\
|
|
}}^{* }(
|
|
acu te
|
|
}^{* })
|
|
Bigg l
|
|
g l
|
|
^{* }-\
|
|
d q
|
|
d le
|
|
}\, |\,\
|
|
}} })\
|
|
arc tan
|
|
bla ck
|
|
F un
|
|
) ;\]
|
|
\ }}(
|
|
Ġ ma
|
|
\[ {}_{
|
|
Ġ} [
|
|
}- |\
|
|
^{* }=
|
|
me nt
|
|
he ad
|
|
$ }_{
|
|
}+ (-
|
|
II I
|
|
r d
|
|
s cale
|
|
}^{ |\
|
|
}}}{ {=}}
|
|
ro d
|
|
}^{* }+\
|
|
})\ }\
|
|
Ġb y
|
|
)] _{
|
|
tw o
|
|
* }
|
|
] }^{
|
|
\, {\
|
|
ĠT r
|
|
Ġ1 3
|
|
) })^{\
|
|
D f
|
|
_{* }}\
|
|
}) }+\|
|
|
] {\
|
|
- }\
|
|
8 7
|
|
Ġ me
|
|
Ġ}\ ,\
|
|
}^{+ }_{
|
|
gen frac
|
|
Ġ\[ (\
|
|
Ġ ra
|
|
co lim
|
|
\[\| (\
|
|
f in
|
|
Ġ1 00
|
|
ro r
|
|
}| }{\
|
|
y x
|
|
Ġ& +
|
|
) }}{{\
|
|
cop rod
|
|
D iff
|
|
)( -
|
|
a y
|
|
Ġ }}^{
|
|
{] }+\
|
|
):= (
|
|
] :
|
|
)| }{
|
|
S A
|
|
\| .\]
|
|
si ze
|
|
Ġ }=\
|
|
}_{* }\
|
|
mid dle
|
|
] }|
|
|
S T
|
|
| >\
|
|
F il
|
|
C A
|
|
{ $\
|
|
+\ ,\
|
|
S U
|
|
}-\ |
|
|
two head
|
|
twohead rightarrow
|
|
\, ,
|
|
{(} [
|
|
subset neq
|
|
}) },
|
|
_{+ }^{\
|
|
}) ;
|
|
[\ |
|
|
)}+\ |
|
|
}) }\\
|
|
ar d
|
|
_{+ },
|
|
^{( -
|
|
)| ^{\
|
|
}= |\
|
|
mb er
|
|
A A
|
|
6 1
|
|
)\ }_{
|
|
=\ !
|
|
^{*}\ |^{
|
|
a le
|
|
b i
|
|
Ġ <\
|
|
A v
|
|
si on
|
|
scale box
|
|
_{\ |
|
|
) }}.\]
|
|
ma l
|
|
7 3
|
|
}\ })\]
|
|
$ -
|
|
}} _
|
|
}) }|
|
|
}^{+ },
|
|
))\ \
|
|
a top
|
|
in j
|
|
M L
|
|
) }).\]
|
|
}| )\
|
|
al g
|
|
^{* }\|_{
|
|
^{+ }}
|
|
}^{\ #
|
|
}) ^{*}
|
|
Ġ\ |_{\
|
|
co mp
|
|
}\ }=\
|
|
9 4
|
|
)|\ ,
|
|
L S
|
|
)) }^{
|
|
Ġ }}{\
|
|
ti c
|
|
}\,\ ,
|
|
_{ <
|
|
ra n
|
|
I J
|
|
Ġe ach
|
|
}+ \]
|
|
C C
|
|
P T
|
|
}^{- }(\
|
|
^{+ }(\
|
|
}}\ }\
|
|
}}\ ;
|
|
}\ },
|
|
Ġ& &
|
|
}\, :\,
|
|
up p
|
|
s n
|
|
[ |
|
|
4 99
|
|
Ġ }^{(
|
|
Ġ1 5
|
|
:=\ {
|
|
_{* })\
|
|
})}\ |\
|
|
}_{+ }}\
|
|
B K
|
|
]= [
|
|
I nt
|
|
}\| (\
|
|
}}) }{
|
|
_{\ #
|
|
l m
|
|
}}( [
|
|
Ġ\ |^{
|
|
}}) }
|
|
}^{ [\
|
|
}\ }}
|
|
Ġ )-
|
|
}\ }=
|
|
Ġi d
|
|
)} <\
|
|
! [\
|
|
b e
|
|
y s
|
|
}) }}{
|
|
\ }^{\
|
|
)\ },\]
|
|
{)}\, .\]
|
|
9 2
|
|
=\ {(
|
|
Ġ }=
|
|
dot eq
|
|
C l
|
|
\| =
|
|
}: |
|
|
se arrow
|
|
}}= -
|
|
Li e
|
|
] }=\
|
|
}\;\ ;\
|
|
)^{ |\
|
|
l times
|
|
: ,
|
|
n h
|
|
}^{* }}
|
|
Ġm od
|
|
= |\
|
|
\{ |\
|
|
}\; .\]
|
|
d P
|
|
45 27
|
|
p p
|
|
}})\ ,
|
|
}(\ {\
|
|
\! -\!
|
|
i h
|
|
}} })\]
|
|
}{ $\
|
|
a a
|
|
\| +\
|
|
! }{
|
|
{) }_{\
|
|
)| .\]
|
|
37 8
|
|
Ġ are
|
|
)) |\
|
|
})\ ;
|
|
^{* }}{
|
|
j ect
|
|
}^{+ }\]
|
|
C F
|
|
}| <\
|
|
S tab
|
|
\ }+\
|
|
}}) }{\
|
|
_{ {}_{\
|
|
Ġ ad
|
|
) !\
|
|
Ġn o
|
|
sin g
|
|
a tion
|
|
Ġ )-\
|
|
}}( {\
|
|
Ġ op
|
|
6 2
|
|
}\| =\
|
|
| |^{
|
|
}\ })\
|
|
Ġ min
|
|
7 1
|
|
C at
|
|
}|= |
|
|
=\ ;\
|
|
de pth
|
|
}}\ {\
|
|
+\ ,
|
|
A P
|
|
| }{|
|
|
] },\
|
|
}} }|
|
|
= }\
|
|
\, |\,\
|
|
c n
|
|
}\ #
|
|
{) }(\
|
|
Ġ pa
|
|
C R
|
|
}{\ |\
|
|
Ġ}\ \
|
|
}_{* }(
|
|
S D
|
|
}| |^{
|
|
c s
|
|
)] .\]
|
|
^{* }+\
|
|
}}}{ {
|
|
) }=(
|
|
_{ ,
|
|
| ^
|
|
9 3
|
|
}) }\,\
|
|
] [
|
|
)^{* }
|
|
)= |
|
|
}^{* }_{\
|
|
22 6
|
|
} ...
|
|
}_{ [\
|
|
Ġ int
|
|
c m
|
|
]\ )
|
|
Ġ{ +
|
|
) })-
|
|
})^{ +
|
|
}& (
|
|
Ġâ Ģ
|
|
< +\
|
|
M N
|
|
^{* }}^{
|
|
T or
|
|
})\ }.\]
|
|
})_{ +
|
|
D R
|
|
| /
|
|
}}) }\]
|
|
\[( -\
|
|
u ll
|
|
}^{* }\|_{
|
|
}|\ ,
|
|
\{\ |
|
|
_{+ }-
|
|
)\ ,\]
|
|
_{+ }}\
|
|
{ /
|
|
a q
|
|
\ }&\
|
|
] }_{
|
|
. ,
|
|
l r
|
|
) }}^{
|
|
{) }}{\
|
|
Ġ :
|
|
to m
|
|
i e
|
|
}\| _
|
|
12 0
|
|
00 1
|
|
) .
|
|
) )=(
|
|
}) _{(
|
|
^{- }
|
|
proj lim
|
|
)}{ (\
|
|
^{+ },
|
|
var projlim
|
|
* {\
|
|
< |
|
|
25 6
|
|
8 3
|
|
M C
|
|
})=\ {\
|
|
k t
|
|
|\ \
|
|
en s
|
|
Ġ ),\
|
|
v matrix
|
|
}) ]^{
|
|
)}\, .\]
|
|
$ }\\
|
|
) }}(\
|
|
Ġ bo
|
|
Ġ time
|
|
{) }}{
|
|
s r
|
|
$ },\\
|
|
)} [\
|
|
C N
|
|
S pan
|
|
)| |_{
|
|
;\ ,
|
|
)! }
|
|
* _{
|
|
o minus
|
|
}}( -\
|
|
}\,\ |
|
|
P D
|
|
)| |
|
|
y pe
|
|
}}^{ [
|
|
)\ !\
|
|
* }(
|
|
) }:
|
|
p n
|
|
}}, &\
|
|
init e
|
|
}| }{|
|
|
Ġd z
|
|
}^{\ ,
|
|
Ġ1 8
|
|
,\, -
|
|
triangle down
|
|
}\, |\
|
|
ab c
|
|
},\ {\
|
|
}^{- (
|
|
n r
|
|
}| ,\]
|
|
B B
|
|
H F
|
|
Ġ& &&
|
|
curl y
|
|
S upp
|
|
k x
|
|
Ġ >
|
|
,\ |\
|
|
z z
|
|
}) })\]
|
|
D G
|
|
Ġâ ľ
|
|
p le
|
|
\[ {}^{
|
|
}}- (
|
|
D F
|
|
n x
|
|
}| }\]
|
|
|\ {
|
|
}| ,\
|
|
m m
|
|
Ġ )+\
|
|
\!\ !
|
|
Ġ De
|
|
}]= [
|
|
}\, ,
|
|
re a
|
|
| |_{\
|
|
I S
|
|
M M
|
|
11 1
|
|
b j
|
|
p lus
|
|
]\ ,\
|
|
Ġ }\]
|
|
d F
|
|
_{- }(\
|
|
l d
|
|
}}( |
|
|
B S
|
|
] )
|
|
T x
|
|
A u
|
|
op y
|
|
}} }_{\
|
|
}:=\ {(
|
|
{ :
|
|
Ġ loc
|
|
curly eq
|
|
}\, =\,\
|
|
Ġ le
|
|
:= (
|
|
}\},\ {
|
|
e ven
|
|
)| }{|
|
|
)) _{\
|
|
Ġ ;\
|
|
i ze
|
|
}) })\
|
|
) })-\
|
|
k r
|
|
tion s
|
|
R T
|
|
)| +|
|
|
e p
|
|
Ġs t
|
|
) }]
|
|
c x
|
|
it y
|
|
Ġn ot
|
|
t v
|
|
Ġ }^{-
|
|
j math
|
|
\[\ #
|
|
9 1
|
|
}) }_{\
|
|
}) ]_{
|
|
}, [\
|
|
a ve
|
|
_{ {
|
|
Ġ pro
|
|
ca n
|
|
}| (\
|
|
]\ }\]
|
|
cccc c
|
|
Ġ })^{
|
|
)}{ |\
|
|
fo rm
|
|
\, |
|
|
long leftrightarrow
|
|
c b
|
|
}} }\|
|
|
{] }\\
|
|
}\ }_{\
|
|
}}\ ;\
|
|
}/ (\
|
|
i u
|
|
}\!\ !
|
|
}[ |\
|
|
}] }(
|
|
4527 56
|
|
] )=\
|
|
}] \\
|
|
}}\, ,\
|
|
C D
|
|
}), &\
|
|
Ġ{ -\
|
|
}_{ {}_{
|
|
A D
|
|
C B
|
|
ac t
|
|
I C
|
|
{ }\
|
|
| ,
|
|
] },
|
|
| }.\]
|
|
\[| (
|
|
S P
|
|
Ġ }}(\
|
|
T C
|
|
}) ),
|
|
sub ject
|
|
t A
|
|
. }
|
|
)}+\ |\
|
|
Ġ\[ +(
|
|
a k
|
|
) }),\
|
|
H ess
|
|
\| ^{\
|
|
}\| .\]
|
|
}} }}
|
|
ng e
|
|
}^{+ }}
|
|
D v
|
|
B V
|
|
}) }|\
|
|
) _{(
|
|
ne w
|
|
\ ),
|
|
}) {\
|
|
n c
|
|
}| ,|
|
|
))\ |_{
|
|
BM O
|
|
m s
|
|
_{ >
|
|
S et
|
|
}) }\,
|
|
^{- |
|
|
over leftarrow
|
|
)} >
|
|
,\,\ ,\
|
|
R eg
|
|
Ġ\( [
|
|
, [\
|
|
Di am
|
|
k p
|
|
M at
|
|
^{* }}(\
|
|
})& =
|
|
}+ [
|
|
mul t
|
|
] }\|
|
|
de d
|
|
Ġ\ #
|
|
}| |_{\
|
|
(\ {\
|
|
b x
|
|
C T
|
|
}) ))\]
|
|
s d
|
|
ng th
|
|
box plus
|
|
lit y
|
|
p k
|
|
! }(
|
|
}}| |
|
|
c ri
|
|
Ġ )^{\
|
|
Ġ\ !\
|
|
-\ |
|
|
Ġ}\ |
|
|
v i
|
|
}-\ |\
|
|
}: (\
|
|
}) }+\|\
|
|
)} /
|
|
8 2
|
|
| -|
|
|
}} }\,
|
|
] .\
|
|
}] }\]
|
|
{) }}\
|
|
_{\ |\
|
|
1 000
|
|
}) )}\]
|
|
ĠC o
|
|
] )=
|
|
{ [\
|
|
}} }\,\
|
|
}) |_{\
|
|
ti t
|
|
}[ [
|
|
}^{- },
|
|
. +\
|
|
r b
|
|
al l
|
|
B r
|
|
}}( (\
|
|
0 10
|
|
j n
|
|
\[\ #\
|
|
}}{ {=}}
|
|
Ġw hen
|
|
\; .\]
|
|
e st
|
|
}_{* }^{
|
|
},\ |\
|
|
}] ,[
|
|
Ġc h
|
|
)= \]
|
|
Ġ- (
|
|
R F
|
|
ce s
|
|
S H
|
|
Ġ max
|
|
Ġ ^{-\
|
|
co v
|
|
Ġ )=\
|
|
: |
|
|
Di ag
|
|
cu r
|
|
Ġ )=
|
|
Ġ ho
|
|
su it
|
|
b u
|
|
k s
|
|
N S
|
|
226 378
|
|
t ex
|
|
ta l
|
|
er r
|
|
L M
|
|
X X
|
|
G D
|
|
Ġ )+
|
|
t ot
|
|
var Phi
|
|
}^{* }.\]
|
|
tex tit
|
|
ne arrow
|
|
] }=
|
|
Ġ& &\
|
|
se d
|
|
F ix
|
|
t z
|
|
}\| +\
|
|
inj lim
|
|
}),\ ,
|
|
var injlim
|
|
d b
|
|
a e
|
|
12 5
|
|
\| }\
|
|
C M
|
|
ap p
|
|
S q
|
|
Ġo ut
|
|
kl y
|
|
I rr
|
|
)! (
|
|
ro m
|
|
Ġ nu
|
|
ea kly
|
|
, }\\
|
|
{] }_{
|
|
Ġ )(
|
|
\[\{ (\
|
|
Ġd ist
|
|
Ġ set
|
|
}) /(
|
|
| {\
|
|
^{* })=\
|
|
0 75
|
|
il b
|
|
- (-
|
|
Sp in
|
|
i q
|
|
th e
|
|
)! }{
|
|
S M
|
|
) }|^{
|
|
+ [
|
|
\, :\,
|
|
pha n
|
|
}+ ...
|
|
) })(
|
|
}} >\
|
|
}\, :\,\
|
|
}: \,
|
|
B D
|
|
}^{+ }-
|
|
phan tom
|
|
}&\ \
|
|
Ġ2 4
|
|
{] }^{\
|
|
11 0
|
|
ar t
|
|
}},\ ,\
|
|
] :\
|
|
| }(
|
|
Ġn on
|
|
) }^{-
|
|
\ }\,.\]
|
|
})| =
|
|
B A
|
|
ĠH om
|
|
g x
|
|
)= {\
|
|
}\ ),
|
|
] }.\]
|
|
(\ ,\
|
|
er ror
|
|
{] }+
|
|
Ġ\ }\
|
|
}| -\
|
|
A X
|
|
ĠS p
|
|
Ġd u
|
|
\ }+
|
|
- }
|
|
im ize
|
|
}_{* }(\
|
|
)}( -
|
|
}^{\ {
|
|
)| <\
|
|
hom ot
|
|
_{- }^{\
|
|
h t
|
|
[ |\
|
|
Ġ )}{
|
|
_{* },\
|
|
)) |
|
|
y p
|
|
)} <
|
|
}}\ }_{
|
|
}}\ .\]
|
|
}_{ <
|
|
_{- },
|
|
: (\
|
|
\}\ }\]
|
|
tra ce
|
|
}^{- },\
|
|
Pro j
|
|
F S
|
|
Ġ1 7
|
|
}^{+ })\
|
|
}= \]
|
|
ale ph
|
|
\ ))
|
|
}} ]_{
|
|
)\, =\,\
|
|
homot opy
|
|
_{+ },\
|
|
b r
|
|
P er
|
|
L T
|
|
! }\]
|
|
de s
|
|
}_{+ }(\
|
|
Ġ}\ |\
|
|
! )^{
|
|
}] }{
|
|
1 12
|
|
n j
|
|
{[ }(\
|
|
Ġon ly
|
|
})\ !
|
|
)) }.\]
|
|
t d
|
|
s a
|
|
^{ [\
|
|
},\ |
|
|
Ġ\ !
|
|
Ex p
|
|
)| +\
|
|
ra ph
|
|
] ).\]
|
|
, :
|
|
k e
|
|
^{- }}\
|
|
)| |\
|
|
}_{ |\
|
|
] /(
|
|
\ },\\
|
|
me ter
|
|
Ġ3 2
|
|
co l
|
|
}}| _{\
|
|
_{( -
|
|
}) ]=\
|
|
}| -|
|
|
over brace
|
|
})\, ,\
|
|
)] ^{\
|
|
S C
|
|
Ġ\[ <
|
|
Ġi t
|
|
}) ]=
|
|
le ment
|
|
79 4
|
|
{[ }{
|
|
}_{+ }}
|
|
}},\ ,
|
|
=\ ;
|
|
}_{- }\
|
|
\,\ ,\
|
|
}}+ (\
|
|
{)} .\
|
|
}^{+ }_{\
|
|
]+ [
|
|
r ot
|
|
p l
|
|
{) },
|
|
av g
|
|
_{- }}\
|
|
} !\
|
|
Ġ2 1
|
|
5 12
|
|
^{* }.\]
|
|
a w
|
|
l t
|
|
),\ ;
|
|
;\ ,\
|
|
un ction
|
|
j m
|
|
sc ri
|
|
\[ {
|
|
}}^{ -\
|
|
var Gamma
|
|
con st
|
|
) }}=\
|
|
d c
|
|
ĠI I
|
|
})= (-
|
|
}\! +\!
|
|
L R
|
|
Ġ ;
|
|
= :
|
|
A R
|
|
B P
|
|
|= |
|
|
}})\ \
|
|
box ed
|
|
\ }-\
|
|
)}\ |_{\
|
|
}^{* }}(
|
|
L P
|
|
}\,\ |\
|
|
}| )^{
|
|
$ },\]
|
|
^{- }(\
|
|
}}}{ |
|
|
Ġco mp
|
|
Ġa b
|
|
Ġ\( -\
|
|
prec curlyeq
|
|
}) )^{-
|
|
Ġ}\ |_{
|
|
\ }=\{
|
|
a i
|
|
) }:\
|
|
}, |\
|
|
ad j
|
|
r g
|
|
{)}\, ,\]
|
|
n l
|
|
ĠT he
|
|
) }),\]
|
|
V ect
|
|
ch ar
|
|
M SE
|
|
â Ģ
|
|
\[= -\
|
|
{[}{ ]}{
|
|
l hd
|
|
} !}\
|
|
M F
|
|
f d
|
|
}) )}
|
|
}),\ ,\
|
|
o si
|
|
Ġ1 9
|
|
}_{- }(
|
|
}}^{* }(\
|
|
}^{+ }=\
|
|
Diam ond
|
|
}} }|\
|
|
B L
|
|
)| +
|
|
\[ =(
|
|
}) )}{
|
|
] })\
|
|
t f
|
|
i ce
|
|
}\; ,\]
|
|
: [
|
|
- [
|
|
o s
|
|
Ġ\[\ |\
|
|
C e
|
|
e e
|
|
Ġs a
|
|
}\| =
|
|
a su
|
|
n mid
|
|
})\ .\]
|
|
$, }\\
|
|
ens pace
|
|
Ġ sp
|
|
Lo g
|
|
D P
|
|
Ġ ))\
|
|
F r
|
|
| ,|
|
|
o sc
|
|
}}+ |
|
|
D E
|
|
] /
|
|
d L
|
|
n q
|
|
| )\]
|
|
ĠM e
|
|
ij kl
|
|
in e
|
|
] \,.\]
|
|
p d
|
|
Ġ lo
|
|
M P
|
|
| )^{\
|
|
C E
|
|
S I
|
|
d N
|
|
p oly
|
|
lr corner
|
|
Ġ\[\ |
|
|
Ġ= [
|
|
}}=\ {\
|
|
Ġt erm
|
|
i me
|
|
a se
|
|
Ġ=\ {\
|
|
ĠI m
|
|
})}{ |
|
|
}\! -\!
|
|
H ilb
|
|
}|\ ,\
|
|
i tion
|
|
5 00
|
|
)}\ )
|
|
\{\ |\
|
|
xx x
|
|
G W
|
|
}}^{ +}\
|
|
row n
|
|
+ {\
|
|
+ }(
|
|
t X
|
|
\ )}
|
|
^{\ {
|
|
})} <\
|
|
] }|\
|
|
}) ))\
|
|
^{* })=
|
|
Ġ3 0
|
|
}< +\
|
|
}&= &
|
|
)) )
|
|
\, |\
|
|
B u
|
|
t n
|
|
ro ng
|
|
ra meter
|
|
14 4
|
|
}\|\ |\
|
|
}}\ !\!\
|
|
}) }}
|
|
-\ ,\
|
|
$ }}
|
|
}), &
|
|
ab le
|
|
) })+\
|
|
r x
|
|
_{* }-
|
|
Ġ5 0
|
|
] }}\
|
|
c ho
|
|
d l
|
|
}: [
|
|
( {
|
|
Ġf rom
|
|
f rown
|
|
)}_{ (
|
|
C om
|
|
499 794
|
|
- {\
|
|
)|\ ,\
|
|
l j
|
|
o b
|
|
$ .}\]
|
|
] }\|\
|
|
)\; .\]
|
|
g o
|
|
}}, &
|
|
}) _{*}\
|
|
}\| ^{\
|
|
\! +\!
|
|
Ġ& -
|
|
* }^{
|
|
)}\ }\]
|
|
}_{+ },\
|
|
r op
|
|
)= |\
|
|
)}\ |^{
|
|
{| }.\]
|
|
T f
|
|
})\ ;\
|
|
f i
|
|
Ġ} }_{
|
|
co th
|
|
el se
|
|
v w
|
|
Ġ\ ;\
|
|
}= -(
|
|
)+ |
|
|
F F
|
|
\,\ ,
|
|
b ab
|
|
A T
|
|
D iv
|
|
P a
|
|
se c
|
|
c le
|
|
Ġâľ ĵ
|
|
Q u
|
|
m ix
|
|
\,\ |
|
|
_{* ,
|
|
}) )}{\
|
|
)=\ {(
|
|
R R
|
|
)] ,\]
|
|
Ġ times
|
|
ĠN o
|
|
T X
|
|
}\| }\
|
|
{] }-\
|
|
^{+ },\
|
|
}))\ \
|
|
}} }\\
|
|
re sp
|
|
,* }(
|
|
}}}{ {=
|
|
}\| +
|
|
. &
|
|
-\ ,
|
|
m d
|
|
\[ {}^{\
|
|
] )}\
|
|
( (-
|
|
da ta
|
|
^{- }_{\
|
|
sta nt
|
|
) }},\]
|
|
! }{(
|
|
F P
|
|
d Y
|
|
di sc
|
|
S ub
|
|
Ġ ),
|
|
Ġ )}
|
|
; -
|
|
B G
|
|
C t
|
|
a f
|
|
}} *\
|
|
Ġ exists
|
|
) _{-
|
|
arc cos
|
|
v v
|
|
}] }{\
|
|
^{- },
|
|
min imize
|
|
{| }+\
|
|
\ }_{\
|
|
S R
|
|
)}\, ,\]
|
|
i T
|
|
, }\
|
|
}\|\ |
|
|
}) }}{\
|
|
_{+ ,
|
|
ĠG L
|
|
] :=\
|
|
)| +|\
|
|
})& =\
|
|
] }^{\
|
|
}}( |\
|
|
Ġx y
|
|
\[( (\
|
|
t p
|
|
):=\ {\
|
|
)} ;
|
|
10 1
|
|
$ }}\
|
|
}} *
|
|
_{+ }+
|
|
}}, (
|
|
T u
|
|
... &
|
|
\[| (\
|
|
i lity
|
|
Ġh as
|
|
ĠC r
|
|
Ġp oint
|
|
}| >\
|
|
)) /
|
|
}}}\ |\
|
|
S w
|
|
Ġ2 3
|
|
up lus
|
|
o us
|
|
\[( {\
|
|
en ce
|
|
\;\ ;\
|
|
}) ;\]
|
|
s w
|
|
u m
|
|
}^{* }}{
|
|
Ġ= (-
|
|
a z
|
|
) }]\
|
|
D er
|
|
m r
|
|
| }}\
|
|
x leftarrow
|
|
Ġ2 5
|
|
}\, .\
|
|
}\,\ ,\,
|
|
Ġf unction
|
|
\| +
|
|
S W
|
|
math rel
|
|
M A
|
|
}) ].\]
|
|
}\, =\,
|
|
R E
|
|
th er
|
|
) })^{-
|
|
) }},\
|
|
}^{- }}\
|
|
})}{ }_{\
|
|
q t
|
|
)] (
|
|
le m
|
|
{$-$ }}\
|
|
V dash
|
|
}) ^{*}(
|
|
C V
|
|
p w
|
|
,* }\
|
|
_{* }^{-
|
|
ti sf
|
|
)! }{(
|
|
Ġ ex
|
|
A i
|
|
Ġ}\ {
|
|
)( (
|
|
)) >
|
|
):= (\
|
|
u w
|
|
cho ice
|
|
Q Coh
|
|
}| )\]
|
|
P U
|
|
ar y
|
|
)}= -\
|
|
^{ {\
|
|
)} ;\
|
|
Ġun i
|
|
\, ,\\
|
|
Ġ sub
|
|
^{* })^{\
|
|
b t
|
|
}\ }=\{
|
|
{[ }-\
|
|
e ri
|
|
_{* })
|
|
Ġd r
|
|
{[ }|
|
|
m l
|
|
mo st
|
|
)\, |\,
|
|
math choice
|
|
}= :
|
|
I P
|
|
}_{* ,\
|
|
{\ #
|
|
de n
|
|
}}) |\
|
|
ĠâĢ ĵ
|
|
se ch
|
|
}|= |\
|
|
{[ }\|\
|
|
/ |
|
|
= }
|
|
) }:=
|
|
li p
|
|
Ġ2 2
|
|
)| >
|
|
D a
|
|
a R
|
|
] \|_{
|
|
_{[ -
|
|
J ac
|
|
e u
|
|
e w
|
|
}] )
|
|
s y
|
|
c f
|
|
Ġ\ ;
|
|
! |\!
|
|
{\ }},\
|
|
}] ^{-
|
|
Ġm o
|
|
}_{* }
|
|
dash rightarrow
|
|
^{* })-
|
|
\ #\
|
|
ĠC N
|
|
ar ge
|
|
)\ |\]
|
|
N T
|
|
le x
|
|
ta tion
|
|
)| }{\
|
|
r f
|
|
B R
|
|
12 4
|
|
):= -\
|
|
Ġ ]\
|
|
Ġ +(
|
|
_{- ,
|
|
f ree
|
|
}}\ ,\]
|
|
Ġt ra
|
|
}([ -
|
|
Ġdi ag
|
|
{/ }\
|
|
}} }}{
|
|
D D
|
|
)= [\
|
|
L L
|
|
}] [
|
|
_{- },\
|
|
Ġ\[= :
|
|
=\ |
|
|
{] }(
|
|
^{+ }-
|
|
Sh v
|
|
e f
|
|
de c
|
|
co nt
|
|
}^{- }_{
|
|
se p
|
|
ig arrow
|
|
right squ
|
|
rightsqu igarrow
|
|
H P
|
|
Ġe t
|
|
ec tive
|
|
m j
|
|
Ġ )_{
|
|
)}\ }_{
|
|
_{* }}
|
|
}^{+ }+
|
|
}[\ ![
|
|
L E
|
|
:\ ;
|
|
w r
|
|
},\ ,-
|
|
dv ol
|
|
}):=\ {
|
|
:=\ ,\
|
|
* }(\
|
|
Ġr eg
|
|
k N
|
|
Ġ la
|
|
}^{+ }-\
|
|
& (\
|
|
}(\ ,\
|
|
T T
|
|
}} }[
|
|
em ma
|
|
[\ ,\
|
|
Ġ(\ (
|
|
co nd
|
|
}} ]=
|
|
})\ |\]
|
|
H C
|
|
a ff
|
|
}\, ,\\
|
|
q x
|
|
}\ {(
|
|
}{ -
|
|
}}| \]
|
|
< -
|
|
m c
|
|
xy z
|
|
) })}\
|
|
W F
|
|
arg max
|
|
Ġnu mber
|
|
Ġb e
|
|
)^{ +}\
|
|
}| )
|
|
j p
|
|
* (
|
|
Ġ& =-\
|
|
)} .\
|
|
}= &\
|
|
z I
|
|
rong ly
|
|
}| ^{-\
|
|
^{+ })\
|
|
Ġ supp
|
|
Ġ })}\
|
|
}) (-
|
|
}=\{ (\
|
|
Ġ6 4
|
|
ĠC t
|
|
L U
|
|
}}=\ |
|
|
\[|\ {
|
|
u x
|
|
Ġ ]
|
|
Ġ{ (\
|
|
ul ar
|
|
te st
|
|
{)}\ |
|
|
\ }}|
|
|
dash v
|
|
\}&\ {
|
|
line ar
|
|
low er
|
|
}-\ {
|
|
per f
|
|
D M
|
|
}}) }^{
|
|
,\ {\
|
|
] })\]
|
|
{| }(
|
|
\}\ )
|
|
Ġco nt
|
|
- }(
|
|
R m
|
|
d o
|
|
A S
|
|
A nn
|
|
s x
|
|
}$ }.\]
|
|
B l
|
|
Ġ )}{\
|
|
Ġor der
|
|
- }^{
|
|
Ġ4 0
|
|
\|\ |
|
|
Ġ\[ |
|
|
^{* }}\]
|
|
] <\
|
|
}& &\\
|
|
}})\ |_{
|
|
n or
|
|
}{* }{\
|
|
{ }^{(
|
|
Ġ /\
|
|
g y
|
|
o ri
|
|
16 0
|
|
] }_{\
|
|
\| ,\]
|
|
S NR
|
|
; ,\]
|
|
D L
|
|
P o
|
|
})^{* }\]
|
|
\|_{ (
|
|
Ġi k
|
|
S ing
|
|
c z
|
|
ĠC on
|
|
_{+ })\
|
|
Ġ(\ (\
|
|
A t
|
|
}}_{ +
|
|
in c
|
|
q p
|
|
I V
|
|
}\| +\|
|
|
}_{+ }
|
|
D A
|
|
Ġe qu
|
|
)) |^{
|
|
}^{+ }+\
|
|
C r
|
|
T P
|
|
\ }}(\
|
|
Ġ} }^{\
|
|
}}) |
|
|
19 2
|
|
Ġ\( (\
|
|
}| ^
|
|
})\ ,\]
|
|
Ġ\[ |\
|
|
}^{* *
|
|
}^{* })=\
|
|
C ap
|
|
)) <\
|
|
= (-
|
|
Ġco m
|
|
R M
|
|
) }}=
|
|
}\ ))
|
|
$ }\]
|
|
P f
|
|
g n
|
|
m t
|
|
N L
|
|
E rr
|
|
ta in
|
|
13 2
|
|
}} ;\]
|
|
{] },\
|
|
{\{ }-\
|
|
; }\\
|
|
) }}{(
|
|
n y
|
|
R P
|
|
q r
|
|
\, =\,
|
|
G F
|
|
}- [
|
|
)},\ \
|
|
I N
|
|
Ġ[ ]{
|
|
_{+ }}
|
|
E M
|
|
}} ]=\
|
|
co dim
|
|
Pro b
|
|
it H
|
|
}})\ ,\
|
|
:= (\
|
|
}- (-
|
|
}^{- })\
|
|
Ġ\(\ {
|
|
})= [
|
|
)|= |
|
|
}) )\,
|
|
\, .\
|
|
ĠI d
|
|
bab ility
|
|
_{ ,\
|
|
d M
|
|
\!\ !\!\
|
|
}( (-
|
|
_{* }+
|
|
E nt
|
|
) }),
|
|
t q
|
|
Ġ\[ [
|
|
})| =\
|
|
}] \|_{
|
|
p x
|
|
\, :\,\
|
|
)^{- (
|
|
k a
|
|
sp t
|
|
^{- |\
|
|
re v
|
|
d H
|
|
h k
|
|
o bs
|
|
}}\ }.\]
|
|
A rea
|
|
x e
|
|
:\ !
|
|
) })+
|
|
}) ))
|
|
tor s
|
|
}}| |\
|
|
_{- })\
|
|
})] (
|
|
cur ve
|
|
Ġ par
|
|
Ġ ))
|
|
_{\ ,
|
|
am ple
|
|
scri pt
|
|
P C
|
|
T S
|
|
^{* })-\
|
|
ii i
|
|
] \,,\]
|
|
(- (
|
|
}_{+ },
|
|
. .\]
|
|
Ġ }}}\
|
|
}^{- }\]
|
|
dx d
|
|
Ġe ff
|
|
{| }=\
|
|
}) }:=\
|
|
Ġa c
|
|
}}= [
|
|
v ir
|
|
Ġ error
|
|
4 00
|
|
}\ }}\]
|
|
}) .
|
|
})| }\
|
|
N C
|
|
}^{* },\]
|
|
un ded
|
|
)] +
|
|
\[[ (
|
|
N p
|
|
D om
|
|
u le
|
|
_{\ {|
|
|
Ġd o
|
|
{] }\,
|
|
})| .\]
|
|
\; ,\]
|
|
}) )(\
|
|
Ġ= |\
|
|
ol u
|
|
M T
|
|
Ġt ype
|
|
}}{ }^{
|
|
Ġ= &
|
|
R L
|
|
Ġ }|^{
|
|
al ue
|
|
^{ !
|
|
] }+\
|
|
th od
|
|
su ch
|
|
}, +
|
|
})= {\
|
|
)] -\
|
|
}:= -\
|
|
\ }.\
|
|
Ġ2 7
|
|
)\, (
|
|
}} })
|
|
)] +\
|
|
}^{* }}{\
|
|
k d
|
|
{] }\,\
|
|
C or
|
|
}] }(\
|
|
)] _{\
|
|
< (
|
|
Ġ{ *}\
|
|
}}^{+ }(
|
|
\ }|\
|
|
0 11
|
|
^{* })+\
|
|
~ {}
|
|
Ġ\[ <\
|
|
})| +|
|
|
or b
|
|
p f
|
|
,\,\ ,\,\
|
|
= \]
|
|
] ]\]
|
|
z w
|
|
ce nt
|
|
P I
|
|
big m
|
|
}_{+ }\]
|
|
{[ }\|
|
|
}+... +
|
|
T HH
|
|
co h
|
|
.. .\]
|
|
)| ,\]
|
|
x p
|
|
var Omega
|
|
13 4
|
|
M o
|
|
)) }(
|
|
_{+ }+\
|
|
)=\ |
|
|
}^{* })^{\
|
|
Ġ\[= (-
|
|
&* \\
|
|
Ġ var
|
|
)}= (\
|
|
con e
|
|
in u
|
|
^{* }).\]
|
|
}}_{ -
|
|
\,\ |\
|
|
s ti
|
|
{(}\ {
|
|
_{+ }-\
|
|
})}{ (\
|
|
C L
|
|
A e
|
|
}| /
|
|
}]= [\
|
|
}]+ [
|
|
s v
|
|
A b
|
|
g s
|
|
Ġra te
|
|
P Q
|
|
di s
|
|
Ġ }},\
|
|
\[ -(
|
|
j s
|
|
): (
|
|
) *\
|
|
Ġ exp
|
|
}}) =(
|
|
}^{+ })\]
|
|
n f
|
|
| )}\
|
|
r ig
|
|
)}}{ {=}}\
|
|
0 12
|
|
\ }}{
|
|
D T
|
|
Ġ )}(
|
|
long leftarrow
|
|
23 4
|
|
# }\
|
|
c at
|
|
{ *
|
|
Ġ$ (
|
|
n b
|
|
})\ },\]
|
|
{\{ }(\
|
|
) }+(
|
|
{| }=
|
|
\ })
|
|
}) }\|_{
|
|
Ġ\[ >
|
|
S el
|
|
th ere
|
|
{[ }|\
|
|
Sw ap
|
|
Ġs ym
|
|
Ġth en
|
|
)\ }
|
|
}^{* }\|^{
|
|
)| <
|
|
tr n
|
|
O T
|
|
}) }[
|
|
}):= (
|
|
d dagger
|
|
m x
|
|
)| (
|
|
}) }}\]
|
|
)_{ +}\
|
|
R an
|
|
B x
|
|
)} }^{\
|
|
n T
|
|
h g
|
|
G H
|
|
!\!\ !\!\
|
|
Ġsa tisf
|
|
)- |
|
|
is o
|
|
j h
|
|
}| ,
|
|
= [\
|
|
] )^{
|
|
Ġ\ {(
|
|
}+ [\
|
|
Ġ }}+\
|
|
24 0
|
|
P A
|
|
$ },\
|
|
}], [\
|
|
] &\
|
|
er s
|
|
\| ,\
|
|
st r
|
|
T N
|
|
\ }-
|
|
] ,\,
|
|
}) )_{\
|
|
{\ }}_{
|
|
re p
|
|
+ \]
|
|
Ġs ta
|
|
\!\ !\
|
|
Le b
|
|
H K
|
|
)| -
|
|
th m
|
|
Ġth ere
|
|
black square
|
|
G M
|
|
_{ !
|
|
Ġd is
|
|
}| }.\]
|
|
}\, _{
|
|
}\| +\|\
|
|
Ġ= |
|
|
form ly
|
|
}) })^{
|
|
P L
|
|
) }]\]
|
|
{( }{\
|
|
\ }}.\]
|
|
] |\
|
|
p en
|
|
}: \,\
|
|
) }}+\
|
|
-\ |\
|
|
_{- }-
|
|
^{- })\
|
|
}}{ [
|
|
}^{+ }=
|
|
e ver
|
|
circ le
|
|
] }-\
|
|
13 5
|
|
})] -\
|
|
c p
|
|
}^{+ })^{
|
|
}= :\
|
|
{) }|
|
|
] },\]
|
|
), -
|
|
Ġ deg
|
|
. -\
|
|
,+ }(
|
|
Ġ >\
|
|
}( {
|
|
}\! -\!\
|
|
! }{\
|
|
i ci
|
|
\, ,\,
|
|
}&= &\
|
|
script size
|
|
3 00
|
|
w e
|
|
ĠC R
|
|
)) <
|
|
}}, (\
|
|
G S
|
|
\[\ ,\
|
|
}^{* }\\
|
|
s b
|
|
}, ...
|
|
Ġf inite
|
|
cccc cccc
|
|
ĠP a
|
|
] /\
|
|
{\ }}=\
|
|
M S
|
|
)) :
|
|
c ard
|
|
r y
|
|
}{ [
|
|
Ġ2 6
|
|
Ġd v
|
|
12 34
|
|
) **
|
|
}\ }}(
|
|
}] )=\
|
|
B un
|
|
S N
|
|
\ }\,,\]
|
|
}_{* ,
|
|
Ġ=\ |
|
|
d G
|
|
}, *
|
|
L F
|
|
l cm
|
|
_{* }=\
|
|
De t
|
|
un i
|
|
$ }.\
|
|
I M
|
|
j a
|
|
}^{ {\
|
|
!\! /
|
|
Ġ=\ |\
|
|
! }.\]
|
|
N m
|
|
l s
|
|
}\ #\
|
|
_{* }}(
|
|
Ġ3 6
|
|
v u
|
|
Ġ )\,
|
|
),\ ;\
|
|
\, =\,\
|
|
}} ]^{
|
|
C Alg
|
|
cu t
|
|
}\! +\!\
|
|
i es
|
|
n on
|
|
};\ ,\
|
|
K K
|
|
}| {\
|
|
{|}\ ;
|
|
de x
|
|
ea k
|
|
Ġpro bability
|
|
B i
|
|
{(}\ ,\
|
|
tra in
|
|
C K
|
|
r p
|
|
Ġp er
|
|
}* _{
|
|
)^{* }\]
|
|
)\ },\
|
|
or phi
|
|
u re
|
|
}| }{|\
|
|
^{( {\
|
|
}}- (\
|
|
}} }}\]
|
|
C x
|
|
{| }\\
|
|
}}& -\
|
|
cy c
|
|
}_{- }^{
|
|
}| -|\
|
|
z x
|
|
}: |\
|
|
}\, ,\,
|
|
Ġ:=\ {
|
|
}: \|
|
|
}}+ |\
|
|
10 8
|
|
u mber
|
|
)+ (-
|
|
C u
|
|
o rm
|
|
}}^{- }\
|
|
Ġ prime
|
|
ga p
|
|
)( |
|
|
\! -\!\
|
|
)\, :\,
|
|
}}& =\
|
|
' {
|
|
t m
|
|
E P
|
|
x f
|
|
Ġs o
|
|
P erf
|
|
si de
|
|
[\ ![\
|
|
~ {}\
|
|
^{* })+
|
|
inu ous
|
|
s to
|
|
tri c
|
|
_{* }\]
|
|
}] =-
|
|
)+ \]
|
|
Ġ curl
|
|
R C
|
|
x u
|
|
w w
|
|
| },\]
|
|
co ker
|
|
12 1
|
|
n ce
|
|
L C
|
|
.. ,
|
|
}}=\ |\
|
|
Ġ }{(
|
|
}\,\ ,\,\
|
|
f r
|
|
v t
|
|
| )^{-
|
|
h a
|
|
Ġ ||
|
|
)= &\
|
|
Ġw eakly
|
|
. +
|
|
a si
|
|
}- \]
|
|
}) )}^{
|
|
lo ck
|
|
{)}\ |\
|
|
dx ds
|
|
tr ue
|
|
}} }^{(
|
|
{)}^{ -\
|
|
\ })=\
|
|
ect ed
|
|
U V
|
|
\% \)
|
|
}\, ,\,\
|
|
}\! =\!\
|
|
a cc
|
|
)\; ,\]
|
|
M e
|
|
m on
|
|
Ġ=\ {(
|
|
)^{ [
|
|
_{( -\
|
|
28 8
|
|
{) }&\
|
|
t b
|
|
|= |\
|
|
s at
|
|
)|= |\
|
|
h v
|
|
Ġ )^{-
|
|
)\, {\
|
|
le ngth
|
|
Ġ} [\
|
|
}^{\ ,\
|
|
ĠT ime
|
|
L D
|
|
}}| (
|
|
Ġ ext
|
|
= {\
|
|
M R
|
|
00 5
|
|
(-\ )
|
|
Con v
|
|
l p
|
|
, .
|
|
}}) }.\]
|
|
{ +}
|
|
u c
|
|
}^{* \
|
|
] }+
|
|
{) }|\
|
|
}}\| (
|
|
n v
|
|
}) )=(
|
|
)^{ (\
|
|
}}(\ {
|
|
}\ }+\
|
|
)] -
|
|
ĠV ar
|
|
; [
|
|
B y
|
|
C y
|
|
D w
|
|
\| }{
|
|
)) ).\]
|
|
Ġ5 6
|
|
^{* },\]
|
|
Ġcon stant
|
|
e i
|
|
homotopy limit
|
|
2 13
|
|
| },\
|
|
at e
|
|
^{* }}^{\
|
|
F T
|
|
b n
|
|
}} }}{\
|
|
^{- }}
|
|
}] )=
|
|
d Q
|
|
^{\ ,
|
|
tr op
|
|
}^{* })=
|
|
ĠL emma
|
|
R a
|
|
E S
|
|
t g
|
|
_{ {(
|
|
-\ {
|
|
}}_{ (\
|
|
}))\ ,\
|
|
\{\ ,
|
|
] ]\
|
|
a j
|
|
t N
|
|
\ (-\)
|
|
Ġd W
|
|
L u
|
|
Ġ rank
|
|
ma p
|
|
cri s
|
|
}}) /
|
|
}} ](
|
|
t k
|
|
or em
|
|
}}) )
|
|
n K
|
|
^{* }:
|
|
Ġdx dt
|
|
}] )^{
|
|
)) &\
|
|
}}[ (
|
|
}^{* }}(\
|
|
)) )=
|
|
})= \]
|
|
k T
|
|
}) *
|
|
}^{- }=\
|
|
sp ec
|
|
Ġint eg
|
|
P P
|
|
` `
|
|
:=\ {\
|
|
)& (
|
|
}}) }(
|
|
B T
|
|
}\ }^{
|
|
Ġ{ |
|
|
)( -\
|
|
)\, =\,
|
|
^{- },\
|
|
{) }>
|
|
})| |_{
|
|
[ {\
|
|
z y
|
|
[\ ,
|
|
Ġ over
|
|
))= (\
|
|
F l
|
|
\ }:
|
|
12 2
|
|
Con e
|
|
. \,
|
|
C n
|
|
O PT
|
|
\ }}{\
|
|
Ġ3 1
|
|
}+ {
|
|
}\| ,\]
|
|
10 5
|
|
^{* })}\
|
|
}] /
|
|
11 3
|
|
Y Z
|
|
d E
|
|
}) _
|
|
Ġ2 9
|
|
L in
|
|
)} /\
|
|
Ġ2 00
|
|
}:= [
|
|
M ax
|
|
N A
|
|
N E
|
|
big circ
|
|
o c
|
|
r ror
|
|
f ix
|
|
la tion
|
|
h f
|
|
)}{\ |
|
|
i w
|
|
e ar
|
|
Ġ inf
|
|
In v
|
|
}) )|\
|
|
)< +\
|
|
P V
|
|
Ġ( (
|
|
res tri
|
|
ĠS O
|
|
Ġ- (\
|
|
B F
|
|
] }-
|
|
v x
|
|
la ss
|
|
{| |
|
|
})] ^{\
|
|
L a
|
|
P SL
|
|
: |\
|
|
p ut
|
|
Ġ ^{*}\
|
|
)! }\]
|
|
Ġterm s
|
|
q z
|
|
\( {
|
|
R x
|
|
\| <\
|
|
})}{ }_{
|
|
) _
|
|
Ġ })+\
|
|
S ch
|
|
t ed
|
|
co m
|
|
\, ,\,\
|
|
}=( (
|
|
M D
|
|
Ġ_{ (
|
|
)/ (\
|
|
}}& =
|
|
J X
|
|
) }}}\
|
|
^{* }:\
|
|
}& =-\
|
|
U n
|
|
h y
|
|
M or
|
|
}}_{ [
|
|
}] ]\]
|
|
}& (\
|
|
\ })=
|
|
y n
|
|
}) }\,.\]
|
|
})( (
|
|
Ġ }),\
|
|
me n
|
|
^{* }}}\
|
|
\{ [
|
|
}^{+ }.\]
|
|
,\ !
|
|
la s
|
|
S ol
|
|
T op
|
|
] |
|
|
}_{\ #
|
|
fra me
|
|
ad d
|
|
Ġ )\,\
|
|
}$ -
|
|
Ġ ro
|
|
}_{+ }^{\
|
|
ve l
|
|
00 2
|
|
Ġ *}\
|
|
}= &
|
|
Ġme asu
|
|
G e
|
|
})| +
|
|
B in
|
|
= :\
|
|
I F
|
|
{ {(\
|
|
Ġ }).\]
|
|
^{+ })^{
|
|
on e
|
|
L O
|
|
}) })
|
|
}] \,\
|
|
}^{ <
|
|
Ġn t
|
|
})/ (\
|
|
. (
|
|
ĠC n
|
|
\ }\,
|
|
Ġ gen
|
|
|\ ;
|
|
}_{ /
|
|
A W
|
|
}}( [\
|
|
) }},
|
|
arrow right
|
|
G C
|
|
) }))\
|
|
d T
|
|
N t
|
|
{\ }}=
|
|
)) )=\
|
|
^{+ }\]
|
|
}}\, (
|
|
var Lambda
|
|
C O
|
|
Ġ vec
|
|
in i
|
|
^{* }),
|
|
** }
|
|
}}:=\ {
|
|
}}) :=\
|
|
] ]
|
|
tri v
|
|
)) }{|
|
|
re t
|
|
})| ^{\
|
|
he art
|
|
big triangledown
|
|
}| ,|\
|
|
, +}\
|
|
)\ }^{
|
|
ĠA x
|
|
)] }\
|
|
heart suit
|
|
p c
|
|
}}{ {=
|
|
ra ble
|
|
ĠP ro
|
|
)}}{ {=}}
|
|
K M
|
|
U U
|
|
}^{ >
|
|
}}{ }_{
|
|
_{* }+\
|
|
I s
|
|
ra c
|
|
)| ^{-
|
|
ici ent
|
|
|_{ [
|
|
}}{ }^{\
|
|
sin ce
|
|
}}| }\
|
|
{, }\]
|
|
b p
|
|
d Z
|
|
}^{* })^{-
|
|
&& &\\
|
|
) }}_{
|
|
=\ |\
|
|
:\ ;\
|
|
A E
|
|
| ).\]
|
|
_{+ }=\
|
|
. ,\]
|
|
p ol
|
|
^{* })^{-
|
|
_{{ }_{(
|
|
Ġ\(-\ )
|
|
T R
|
|
}) ],\]
|
|
}^{* }}\]
|
|
Ġi m
|
|
go od
|
|
Ġ })^{\
|
|
\| }{\
|
|
)| >\
|
|
{- (
|
|
v a
|
|
})] +\
|
|
) }}-
|
|
h u
|
|
}}^{* }\]
|
|
g p
|
|
)] ,\
|
|
f ib
|
|
Ġ })-\
|
|
^{+ }+
|
|
ro up
|
|
)= :
|
|
\ )-
|
|
};\ ,
|
|
&= &
|
|
|\ |
|
|
)) +(
|
|
11 11
|
|
V ec
|
|
l b
|
|
^{+ }}(
|
|
] ),\]
|
|
i le
|
|
}_{* }^{\
|
|
Ġ}\ ;
|
|
99 8
|
|
H T
|
|
Da sh
|
|
}$ ,
|
|
m h
|
|
{) },\\
|
|
B E
|
|
T w
|
|
})= |
|
|
restri ction
|
|
O rb
|
|
}\! =\!
|
|
Ġ edge
|
|
^{* }}{\
|
|
}[ -\
|
|
B U
|
|
L B
|
|
R G
|
|
\ };\]
|
|
f e
|
|
ab cd
|
|
)&= &
|
|
)= -(
|
|
] ),\
|
|
ĠR es
|
|
_{+ }}{
|
|
z t
|
|
F G
|
|
o ff
|
|
}))\ |_{
|
|
Ġ& (
|
|
18 0
|
|
Ġcon tain
|
|
big triangle
|
|
co re
|
|
})| }{
|
|
bigtriangle up
|
|
l ds
|
|
99 9
|
|
{ }{
|
|
Ġi x
|
|
{] }-
|
|
}}}{ (\
|
|
\! +\!\
|
|
ĠN umber
|
|
Ġ log
|
|
15 0
|
|
v Dash
|
|
Ġp osi
|
|
D C
|
|
D g
|
|
o f
|
|
}\ }\\
|
|
\|_{ *
|
|
23 1
|
|
Ġbo unded
|
|
D S
|
|
ri d
|
|
})| |
|
|
Ġ\[+ (\
|
|
n N
|
|
b l
|
|
}_{\ {|
|
|
12 6
|
|
Ġ inter
|
|
ii int
|
|
}}= [\
|
|
]{ }
|
|
P F
|
|
h h
|
|
Ġ\ %
|
|
), [
|
|
})}{ |\
|
|
ĠI n
|
|
r v
|
|
t H
|
|
k u
|
|
_{+ }^{-
|
|
w eakly
|
|
)}= -
|
|
+ }^{
|
|
Fro b
|
|
))\, .\]
|
|
P R
|
|
pa ct
|
|
K T
|
|
\{\ {
|
|
on ent
|
|
ĠA lg
|
|
Ġbo und
|
|
}} }^{-
|
|
}})\ |
|
|
Ġ3 3
|
|
A f
|
|
ĠD u
|
|
q s
|
|
{| }^{\
|
|
,\ ,\,
|
|
\ }(
|
|
\[ <
|
|
}) ^{*}(\
|
|
}^{* }|\
|
|
S V
|
|
}) )}.\]
|
|
}| }(
|
|
}\, +\,\
|
|
AB C
|
|
Ġ\[ -(
|
|
)) ,\\
|
|
& |
|
|
{ .}\]
|
|
}_{ (-
|
|
au g
|
|
A M
|
|
M in
|
|
b q
|
|
}: \\
|
|
re c
|
|
_{* }}{
|
|
ab s
|
|
ec tion
|
|
]- [
|
|
^{ {}^{
|
|
}] ).\]
|
|
}] ;
|
|
{| }(\
|
|
_{- (
|
|
era ge
|
|
14 5
|
|
olu tion
|
|
, ...
|
|
3 21
|
|
}} }[\
|
|
mo oth
|
|
i al
|
|
p tion
|
|
De f
|
|
Ġa v
|
|
})=\ {(
|
|
T L
|
|
}}) >
|
|
]= -\
|
|
A V
|
|
h r
|
|
r j
|
|
i H
|
|
: \|
|
|
Q P
|
|
\| ^
|
|
})\, |\,
|
|
a h
|
|
} ...\
|
|
ra m
|
|
}}\| (\
|
|
O D
|
|
g f
|
|
Ġ3 4
|
|
},\, -\
|
|
ĠD i
|
|
}}, ...,
|
|
38 4
|
|
ri t
|
|
\|\ ,\
|
|
_{+ }^{(
|
|
}) }&\
|
|
}\},\ {\
|
|
}} ].\]
|
|
S B
|
|
; {\
|
|
T v
|
|
si ble
|
|
le ave
|
|
A y
|
|
45 6
|
|
Ġ1 000
|
|
}^{* }}^{
|
|
Ġ_{ -
|
|
Ġ\[=\ |
|
|
2 16
|
|
p T
|
|
u q
|
|
Ġ ar
|
|
{( -\
|
|
[\ {
|
|
F in
|
|
^{ <
|
|
i A
|
|
i able
|
|
M on
|
|
T F
|
|
b al
|
|
er o
|
|
h x
|
|
{\ }}^{
|
|
)) },\]
|
|
Ġco nd
|
|
\ }}=\
|
|
}} .
|
|
^{* }|\
|
|
^{* }(-
|
|
}] \,
|
|
3 20
|
|
,\,\ ,\,
|
|
N a
|
|
] =(
|
|
f l
|
|
}\ )}
|
|
)\ }=\
|
|
_{- }+
|
|
) }}+
|
|
no rm
|
|
: }\
|
|
_{\ !
|
|
)| }
|
|
\ }).\]
|
|
S G
|
|
Ġ size
|
|
_{* }-\
|
|
x a
|
|
le n
|
|
arc sin
|
|
}]- [
|
|
] &
|
|
Ġ\ &\
|
|
)) )^{
|
|
)_{+ }^{
|
|
2 11
|
|
A U
|
|
B W
|
|
}) _{*}
|
|
de nt
|
|
|\ ;\
|
|
}\!\ !\!\
|
|
)) :=\
|
|
^{* }|
|
|
Ġ6 0
|
|
N M
|
|
t ch
|
|
| }=\
|
|
A s
|
|
{[ }-
|
|
Ġ3 5
|
|
Ġ })-
|
|
}}\ !\!
|
|
}\| }{
|
|
H e
|
|
ĠM o
|
|
}^{* (
|
|
}^{- }=
|
|
dy dx
|
|
\| +\|
|
|
O ut
|
|
{ }{}{
|
|
p u
|
|
_{+ }\]
|
|
}=- (\
|
|
\;\ ;
|
|
sq subseteq
|
|
]\ !\
|
|
R D
|
|
}})\ |\
|
|
})\ ;.\]
|
|
}\| <\
|
|
Ġcon v
|
|
= -(
|
|
> -
|
|
se n
|
|
Lo c
|
|
) {
|
|
P E
|
|
ds dt
|
|
_{* })\]
|
|
_{* }:\
|
|
C I
|
|
{[ }\,\
|
|
L A
|
|
{)} <\
|
|
Ġ8 0
|
|
Ġcon n
|
|
t c
|
|
Ġ3 7
|
|
}_{+ }.\]
|
|
ow er
|
|
)+ |\
|
|
]\! ]\
|
|
P M
|
|
it s
|
|
}):= (\
|
|
D N
|
|
\ }\,\
|
|
] ^{(
|
|
})| |\
|
|
W P
|
|
)) -(
|
|
}\| ^
|
|
Ġ da
|
|
up tau
|
|
mo de
|
|
\| |
|
|
:=\ {(
|
|
Ġs ign
|
|
P GL
|
|
}\ :
|
|
ĠA d
|
|
ĠY es
|
|
)) }=\
|
|
di ff
|
|
.. ..
|
|
34 5
|
|
c sc
|
|
| }(\
|
|
)} })\
|
|
T ot
|
|
Ġ 99
|
|
10 24
|
|
\( {}_{
|
|
ĠS L
|
|
Ġ4 8
|
|
I so
|
|
b z
|
|
n L
|
|
}} }}{{\
|
|
F M
|
|
a ce
|
|
{) }^
|
|
Ġ( -\
|
|
ĠC om
|
|
}}| |_{
|
|
ĠSp ec
|
|
P e
|
|
b w
|
|
}^{- }-
|
|
), (-
|
|
P oly
|
|
Ġcont inuous
|
|
}] |\
|
|
})| <\
|
|
}|_{ [
|
|
Ġ }}.\]
|
|
}^{* }:
|
|
Ġal most
|
|
r w
|
|
}+\ \
|
|
M a
|
|
o u
|
|
! }(\
|
|
^{+ }=\
|
|
2 000
|
|
Ġ case
|
|
Ġ )|^{
|
|
\| {\
|
|
}^{* }\|_{\
|
|
}: \|\
|
|
}_{+ })\
|
|
A ff
|
|
ĠA v
|
|
_{- }}
|
|
cccc cc
|
|
comp lement
|
|
> (
|
|
^{* }|^{
|
|
}& &
|
|
a ma
|
|
s j
|
|
\[\ ,
|
|
}_{+ })\]
|
|
) }})
|
|
C s
|
|
d U
|
|
ma in
|
|
}_{ ,
|
|
00 01
|
|
}$ },\\
|
|
}_{- }(\
|
|
I w
|
|
j t
|
|
in ed
|
|
) })}{
|
|
}{ }^{(
|
|
)| ,\
|
|
te p
|
|
H ol
|
|
q q
|
|
Ġ )\|_{
|
|
po st
|
|
S F
|
|
{( (
|
|
) })(\
|
|
)] ^{-
|
|
P u
|
|
a us
|
|
36 0
|
|
$ .}\
|
|
o rt
|
|
}} ...
|
|
}^{* })_{
|
|
)}( (
|
|
}^{- }+
|
|
und s
|
|
_{ !}\
|
|
}) }^{(
|
|
am p
|
|
}),\ ;
|
|
}( (-\
|
|
00 4
|
|
}):=\ {\
|
|
ro ss
|
|
Ġop en
|
|
Ġ qu
|
|
00 8
|
|
,- }(
|
|
)& -\
|
|
Ġ })(
|
|
}, +\
|
|
( .
|
|
Ġ })=\
|
|
)} |_{
|
|
ĠA ut
|
|
n R
|
|
}^{* }).\]
|
|
{| (
|
|
15 6
|
|
}$ .}\]
|
|
^{\# }
|
|
}) _{-
|
|
}} ]^{\
|
|
{\| }\]
|
|
:= -\
|
|
x v
|
|
d K
|
|
{(} [\
|
|
]\ }\
|
|
{] }_{\
|
|
})| -
|
|
}* (
|
|
$ }
|
|
}] \}\]
|
|
|- |\
|
|
âĢ Ļ
|
|
U E
|
|
,\ ;\;\
|
|
D h
|
|
var Delta
|
|
Ġ& =(
|
|
black triangleright
|
|
al ity
|
|
}^{* ,
|
|
}|\ !
|
|
st d
|
|
\ }}+\
|
|
10 4
|
|
frame box
|
|
,\ ;\;
|
|
}\, +\,
|
|
A z
|
|
}\ }+
|
|
}| }}\
|
|
}}, -
|
|
G A
|
|
N P
|
|
q n
|
|
Ġ\ ,\]
|
|
)}=\ {
|
|
Ġ )(\
|
|
{\| }(
|
|
_{- }}{
|
|
))^{ *
|
|
, (-
|
|
B er
|
|
m L
|
|
}^{* })+\
|
|
ĠS ym
|
|
,\, (
|
|
erf c
|
|
w x
|
|
})\ !\
|
|
\|\ ,
|
|
om ial
|
|
})] _{\
|
|
Ġ9 5
|
|
Ġre sp
|
|
})^{ +}\
|
|
Ġd B
|
|
) &-
|
|
), {\
|
|
F E
|
|
T ra
|
|
h ss
|
|
Ġe lement
|
|
L G
|
|
Ġ\[ :=
|
|
Ġd iff
|
|
}* |
|
|
) }))\]
|
|
),\ ,(
|
|
curve arrowright
|
|
+ }^{\
|
|
(\ ,
|
|
)) [
|
|
00 3
|
|
{\ '{
|
|
}} })^{
|
|
\ }>
|
|
{\ }}\\
|
|
em p
|
|
Ġf ix
|
|
Ġs h
|
|
ĠI II
|
|
sm ile
|
|
| )|
|
|
); \\
|
|
C Z
|
|
k o
|
|
t L
|
|
}{ =}\
|
|
ver ti
|
|
c T
|
|
c q
|
|
Ġ pri
|
|
}^{- }}
|
|
13 6
|
|
0 25
|
|
j r
|
|
)= :\
|
|
}}^{ +\
|
|
T erm
|
|
h yp
|
|
Ġ ge
|
|
B e
|
|
r dr
|
|
}} ]_{\
|
|
)}\ !
|
|
dx dv
|
|
Ġ4 2
|
|
dV ol
|
|
ama lg
|
|
}+ ||
|
|
}] /(
|
|
}^{( +
|
|
}^{* })-
|
|
}^{* })-\
|
|
), -\
|
|
})= [\
|
|
}; (
|
|
16 8
|
|
z q
|
|
| }+\
|
|
}{ {\
|
|
^{* }\\
|
|
m skip
|
|
ĠC M
|
|
_{+ }=
|
|
c v
|
|
}}_{ *
|
|
}_{+ }+
|
|
,* }(\
|
|
) }}-\
|
|
\[\ #\{
|
|
^{* }\|_{\
|
|
Ġ )|\
|
|
le ad
|
|
)) /\
|
|
k q
|
|
Ġ ref
|
|
Ġ{ }_{
|
|
\[= (\
|
|
R f
|
|
}}) ).\]
|
|
k b
|
|
}}\ ;.\]
|
|
}^{+ })
|
|
la x
|
|
}- {
|
|
ĠThe orem
|
|
E E
|
|
| }^{
|
|
^{* })(
|
|
au x
|
|
+ [\
|
|
s A
|
|
}[ {\
|
|
\[| {\
|
|
})) <\
|
|
T y
|
|
Ġ })_{
|
|
Ġ\[= [
|
|
}< (
|
|
}$ }\
|
|
u se
|
|
Ġc y
|
|
3 12
|
|
{| },\]
|
|
ca tion
|
|
L aw
|
|
M O
|
|
^{* }),\
|
|
}_{+ ,
|
|
)\,\ ,\
|
|
}< |
|
|
ĠO p
|
|
}\; =\;\
|
|
Pro x
|
|
\[( [
|
|
Ġ9 6
|
|
|\! |\!
|
|
g raph
|
|
m g
|
|
Ġ det
|
|
lo sed
|
|
22 2
|
|
Ġ| |\
|
|
m q
|
|
}^{- })\]
|
|
)) ]\
|
|
})| =|
|
|
}}[ (\
|
|
Ġ9 4
|
|
) }}^{(
|
|
P G
|
|
w s
|
|
{|}\ ;\
|
|
N O
|
|
}- [\
|
|
Ġ })+
|
|
o slash
|
|
Ġe l
|
|
})) >
|
|
}] ,\\
|
|
}}) )=
|
|
Ġs gn
|
|
),& (
|
|
\ }}^{
|
|
var Sigma
|
|
M U
|
|
] }^{(
|
|
Ġ} /
|
|
Ġc l
|
|
}$ },\]
|
|
Ġ\ }}\
|
|
sq cap
|
|
22 1
|
|
ty pe
|
|
mu m
|
|
Ġ= [\
|
|
Ġe n
|
|
me asu
|
|
R Hom
|
|
Ġ })=
|
|
^{* }\|\
|
|
ik x
|
|
Ġuni formly
|
|
\ }}=
|
|
\ }|\]
|
|
K S
|
|
var limsup
|
|
)}, &\
|
|
du al
|
|
M W
|
|
q k
|
|
po unds
|
|
\ }<\
|
|
}\, ^{
|
|
ĠL o
|
|
}})= (\
|
|
orphi sm
|
|
| }|\
|
|
me as
|
|
Ġu p
|
|
Ġp re
|
|
Ġ\[=\ |\
|
|
\ }},\
|
|
q c
|
|
})|\ ,
|
|
.& .&
|
|
k g
|
|
{) }}\]
|
|
_{* }^{(
|
|
}}, {\
|
|
j q
|
|
}} }&\
|
|
}}) /\
|
|
)) }=
|
|
v s
|
|
}^{* }&
|
|
Ġv ol
|
|
sin c
|
|
ir st
|
|
}\ }\}\]
|
|
)_{ |
|
|
i B
|
|
}^{* }\,\
|
|
Ġ} })\
|
|
}\| }{\
|
|
d I
|
|
Ġ |_{
|
|
}) }}.\]
|
|
}\| {\
|
|
}},\ |\
|
|
))= -\
|
|
ĠâĢ Ķ
|
|
H L
|
|
}}\ },\]
|
|
Ġi mp
|
|
]= [\
|
|
}\ {|
|
|
- [\
|
|
< |\
|
|
}^{+ ,
|
|
}{ $
|
|
}},\ |
|
|
Ġs pan
|
|
_{* ,\
|
|
po s
|
|
i ven
|
|
Ġp r
|
|
10 2
|
|
}+| |\
|
|
Q R
|
|
p j
|
|
{ <
|
|
})\ |+\
|
|
_{* }=
|
|
}) }[\
|
|
Ġon e
|
|
{ .
|
|
ĠL e
|
|
}}, -\
|
|
}}| =
|
|
# _{
|
|
$ }}}
|
|
9 05
|
|
{$-$ }}
|
|
i an
|
|
{ +
|
|
| }{|\
|
|
^{* }_{(
|
|
f u
|
|
t B
|
|
) })}{\
|
|
right rightarrow
|
|
}}) )=\
|
|
rightrightarrow s
|
|
E q
|
|
w f
|
|
t j
|
|
_{- }^{(
|
|
C G
|
|
Ġ= -(
|
|
Ġs in
|
|
ma rk
|
|
)\ }=
|
|
Ġ1 28
|
|
}^{* }:=\
|
|
R u
|
|
a il
|
|
}) *\
|
|
f ull
|
|
Ġ }}-\
|
|
)) ]
|
|
Ġl arge
|
|
24 3
|
|
}}^{- }(
|
|
Ġmo del
|
|
men sion
|
|
)= &
|
|
^{* }}=\
|
|
}}) |^{
|
|
)}{\ |\
|
|
)) .\
|
|
)+ {\
|
|
25 0
|
|
Ġho lds
|
|
|\ |\
|
|
^{* }[
|
|
}\, [
|
|
}=( -\
|
|
14 0
|
|
el d
|
|
se s
|
|
)\, |
|
|
A G
|
|
\, [
|
|
Ġ matrix
|
|
_{ !}
|
|
)+\ |
|
|
a X
|
|
nu m
|
|
\| -\
|
|
st rongly
|
|
Ġ9 0
|
|
+ }(\
|
|
}| )^{\
|
|
)\, |\
|
|
^{ {
|
|
}( .
|
|
N e
|
|
Ġ linear
|
|
ma ll
|
|
Ġâľ Ĺ
|
|
P ar
|
|
\,\ ,\,\
|
|
ct s
|
|
Ġ0 0
|
|
Ġi z
|
|
}}= (-
|
|
Ġposi tive
|
|
O P
|
|
{\ }}\,.\]
|
|
}^{* }[
|
|
Ġb c
|
|
rea sing
|
|
r q
|
|
x leftrightarrow
|
|
ci ty
|
|
G P
|
|
H R
|
|
ma xi
|
|
})| }{|
|
|
\[= -
|
|
cri t
|
|
]\ }.\]
|
|
)| |_{\
|
|
^{* };
|
|
Ġ\[= |
|
|
!\!\ !\
|
|
P W
|
|
)\ {
|
|
}^{* }:\
|
|
i L
|
|
{| }|
|
|
Q x
|
|
W e
|
|
are a
|
|
R B
|
|
)| |^{
|
|
}}| ^{\
|
|
)\| _
|
|
0 15
|
|
H M
|
|
O b
|
|
] })
|
|
] }^{[
|
|
)\, |\,\
|
|
# (
|
|
\ }|
|
|
] }}
|
|
u gh
|
|
bo w
|
|
ho rt
|
|
\{\ ,\
|
|
}^{+ },\]
|
|
ĠP rop
|
|
})| +\
|
|
}}\,\ |
|
|
S c
|
|
}}(\ |
|
|
\|\ |\
|
|
sta nce
|
|
}\; (
|
|
}{*}{\ (
|
|
| }|
|
|
si ty
|
|
}, {
|
|
< -\
|
|
O N
|
|
\ }}|\
|
|
{\ ,
|
|
Ġ{ [
|
|
!\!\ !
|
|
u d
|
|
}} }&
|
|
or k
|
|
^{+ }.\]
|
|
}) !
|
|
Av g
|
|
Y X
|
|
\ :
|
|
u f
|
|
w v
|
|
ti e
|
|
}}) &\
|
|
}_{* },\
|
|
Ġcom pact
|
|
la tive
|
|
Ġ& .
|
|
})] +
|
|
7 20
|
|
k G
|
|
Ġs ing
|
|
ĠK er
|
|
ne l
|
|
}}{ -
|
|
)} >\
|
|
Ġ\[= :\
|
|
osi tion
|
|
I R
|
|
Ġ )\\
|
|
Ġ& &&\
|
|
Ġ3 8
|
|
. -
|
|
\ }}+
|
|
\ }:\
|
|
}} }}(
|
|
de v
|
|
}^{* })(
|
|
}^{+ }}(
|
|
}$ }\\
|
|
S k
|
|
)) |_{
|
|
cr ys
|
|
13 3
|
|
N o
|
|
Z F
|
|
}\ })=\
|
|
ri c
|
|
)) ]\]
|
|
}\| ^{-
|
|
}}{( -
|
|
D B
|
|
K P
|
|
S f
|
|
Ġ lin
|
|
}}{ =}\
|
|
)}\ }\
|
|
}}}{ |\
|
|
}}\, |
|
|
[ [\
|
|
m f
|
|
Ġ }}+
|
|
^{* \
|
|
H t
|
|
N k
|
|
h p
|
|
}}) <\
|
|
l v
|
|
}_{ {}_{\
|
|
Ġcon st
|
|
K U
|
|
Ġ res
|
|
00 6
|
|
mi ze
|
|
}^{- (\
|
|
Ġd f
|
|
l f
|
|
}& =-
|
|
_{- }=\
|
|
\ })^{
|
|
^{* }/
|
|
}[ [\
|
|
Sub set
|
|
z u
|
|
Ġ +|
|
|
{] }\,.\]
|
|
, ...,\
|
|
}: {\
|
|
ol d
|
|
)^{* }(
|
|
F L
|
|
k L
|
|
| }-
|
|
Ġin v
|
|
(| |
|
|
T A
|
|
^{* }}_{
|
|
}\, =\
|
|
))\ }\]
|
|
\! =\!
|
|
Ġ )}^{
|
|
}| }=\
|
|
{\{ }|
|
|
24 6
|
|
Ġdx dy
|
|
ori thm
|
|
y t
|
|
Ġ\ &
|
|
^{\ ,\
|
|
}< -
|
|
^{* }&
|
|
})+ |
|
|
Con f
|
|
}) $
|
|
}) )/
|
|
sta b
|
|
so ft
|
|
}( *
|
|
,\, -\
|
|
Ġ5 00
|
|
Ġ }(-
|
|
)=\ \
|
|
A H
|
|
p b
|
|
|^{ (
|
|
T e
|
|
co f
|
|
00 7
|
|
})\, =\,\
|
|
jk l
|
|
bow tie
|
|
P B
|
|
\ }},\]
|
|
N D
|
|
] >
|
|
x q
|
|
}^{ {}^{
|
|
E u
|
|
Ġ top
|
|
ĠE nd
|
|
0 20
|
|
v mode
|
|
| &\
|
|
er ence
|
|
{) }=-\
|
|
}& &\
|
|
leave vmode
|
|
) _{*}\
|
|
; (\
|
|
g d
|
|
}) _{*}(
|
|
})^{ [
|
|
sma sh
|
|
! }=\
|
|
P H
|
|
g H
|
|
q a
|
|
Ġs pace
|
|
ĠE rror
|
|
F x
|
|
G ap
|
|
s ys
|
|
}} }\,.\]
|
|
\| )\
|
|
)) |\]
|
|
}(- ,
|
|
K t
|
|
at ch
|
|
^{* }),\]
|
|
Po i
|
|
x w
|
|
\[ <\
|
|
}: \{
|
|
O M
|
|
}}, ...,\
|
|
M x
|
|
n z
|
|
}) ],\
|
|
^{* }:=\
|
|
Ġpa rameter
|
|
âĢ ĵ
|
|
}} ]}\
|
|
)=\ |\
|
|
\| [
|
|
Ġ\[= |\
|
|
z f
|
|
Ġ ta
|
|
{\ }}+\
|
|
ĠC L
|
|
)}( {\
|
|
Ġw hi
|
|
U B
|
|
^{ >
|
|
et we
|
|
etwe en
|
|
0 13
|
|
}/ {\
|
|
ĠI nt
|
|
| )\,
|
|
}^{- }+\
|
|
)} ^
|
|
}\|=\ |
|
|
Ġst rongly
|
|
* }_{
|
|
_{- }^{-
|
|
_{+ }}(
|
|
on al
|
|
Ġ4 4
|
|
pen dent
|
|
}) }>
|
|
circle d
|
|
. },\]
|
|
}{ (-
|
|
}^{* })+
|
|
))\ |_{\
|
|
* _{\
|
|
F D
|
|
Ġ\[ {\
|
|
})= |\
|
|
Ġ\, ,\
|
|
! }+\
|
|
^{ !}\
|
|
text circled
|
|
}] =(
|
|
&& &&\\
|
|
I T
|
|
s ol
|
|
math ord
|
|
}) }&
|
|
}}) ^{*}\
|
|
,* }
|
|
bre ak
|
|
5 76
|
|
| }\,
|
|
|_{ (
|
|
. }&\
|
|
A n
|
|
F or
|
|
})\ }
|
|
})] -
|
|
}): (
|
|
R ad
|
|
i ck
|
|
Ġ\ ,(
|
|
}}) :
|
|
})}=\ |
|
|
Un if
|
|
Ġ sim
|
|
_{* }:
|
|
^{[ *
|
|
Ġ:= (
|
|
e pi
|
|
o tal
|
|
}) _{*}(\
|
|
ll ll
|
|
up beta
|
|
}\ }^{\
|
|
^{* }})\
|
|
); (
|
|
}] :
|
|
}] }=\
|
|
Ġ} &\
|
|
^{( +
|
|
Ġ4 5
|
|
Ġ }}=\
|
|
ma tion
|
|
}}\, {\
|
|
R i
|
|
s ph
|
|
ra tion
|
|
Ġ\( [(
|
|
{] }.\
|
|
T ype
|
|
{) }^{(
|
|
}] /\
|
|
n se
|
|
| )(
|
|
Ġs olution
|
|
)\, ,\\
|
|
K O
|
|
\[ {}_{\
|
|
{\ {\
|
|
A rg
|
|
C rit
|
|
I D
|
|
M K
|
|
)}\ ;
|
|
}^{- }-\
|
|
11 4
|
|
]= -
|
|
( {}^{
|
|
0 16
|
|
8 00
|
|
k in
|
|
Ġ data
|
|
)) }+\
|
|
)} })\]
|
|
}|\ !|\!
|
|
})] ^{-
|
|
Ġle ngth
|
|
}] =-\
|
|
)\; =\;\
|
|
}) }).\]
|
|
{\ ,\
|
|
g ph
|
|
}^{ {
|
|
^{- }|^{
|
|
ĠMe thod
|
|
u a
|
|
), ...,
|
|
}}}{\ |
|
|
@ @
|
|
}\| ,\
|
|
\[ +(
|
|
{) }+(
|
|
))^{ -\
|
|
99 98
|
|
$ }^{
|
|
_{- }=
|
|
}\; ,\
|
|
Ġ{* }
|
|
_{\# }\
|
|
R c
|
|
Ġv al
|
|
Ġsatisf ies
|
|
Q M
|
|
}}(\ |\
|
|
}}) [
|
|
Ġe v
|
|
T D
|
|
ci te
|
|
\ }},
|
|
] :=
|
|
)) }{(
|
|
on s
|
|
( (-\
|
|
Y Y
|
|
\, -
|
|
Ġ_{ +
|
|
\( {}^{
|
|
| }+
|
|
}| },\]
|
|
Ġt w
|
|
lead sto
|
|
}),\ ;\
|
|
eqq colon
|
|
})}{\ |
|
|
Ġu v
|
|
}/ \|\
|
|
12 7
|
|
22 5
|
|
ru e
|
|
n ing
|
|
Ġ} }_{\
|
|
})} <
|
|
})| +|\
|
|
K e
|
|
X Z
|
|
^{* ,
|
|
^{* }},
|
|
Ġ( {\
|
|
ĠT h
|
|
Ġp rop
|
|
) }]_{
|
|
Ġpa th
|
|
A ss
|
|
_{ <\
|
|
{)}\ .\]
|
|
ĠT M
|
|
\,\ }\]
|
|
}{| |
|
|
Ġif f
|
|
)! }.\]
|
|
ĠO r
|
|
V R
|
|
y ing
|
|
al most
|
|
}] }.\]
|
|
},\ ,\,
|
|
{) }=(
|
|
vert ex
|
|
Com p
|
|
s z
|
|
\, +\,
|
|
{| |\
|
|
)| ^
|
|
) }}{|
|
|
r z
|
|
}:=\ |
|
|
}) }\,,\]
|
|
lo ze
|
|
lin g
|
|
C W
|
|
Ġ3 9
|
|
}}| (\
|
|
loze nge
|
|
J Y
|
|
Ġv alue
|
|
\[(\ {
|
|
S x
|
|
u g
|
|
| [
|
|
)= +\
|
|
\{ {\
|
|
^{+ }=
|
|
24 5
|
|
Ge o
|
|
Ġ& =-
|
|
us ing
|
|
)+ [
|
|
ĠE xt
|
|
D V
|
|
x g
|
|
A p
|
|
Ġ )_{\
|
|
}\|_{ (
|
|
ĠS U
|
|
^{+ }}^{\
|
|
, <
|
|
| }\,\
|
|
ra int
|
|
{) }}.\]
|
|
)}{ =}\
|
|
{\| }(\
|
|
,+ }(\
|
|
\({ }^{-
|
|
+ -
|
|
V aR
|
|
Ġ }),\]
|
|
Ġ=\ ,\
|
|
t ing
|
|
ig en
|
|
\|_{ [
|
|
Ġp oly
|
|
{\{ }-
|
|
Ġ4 9
|
|
})\, |\,\
|
|
\[- (\
|
|
eff icient
|
|
2 12
|
|
> \]
|
|
J v
|
|
P ol
|
|
Ġ_{ *
|
|
}> (
|
|
G R
|
|
n H
|
|
w u
|
|
co st
|
|
u ct
|
|
igh t
|
|
)}_{ -
|
|
64 0
|
|
Ġpoint s
|
|
Ġvar iable
|
|
2 10
|
|
in al
|
|
{( }(-
|
|
Ġ+ (\
|
|
)}\, ,\
|
|
no ise
|
|
{) }}
|
|
sta ble
|
|
4 14
|
|
> -\
|
|
E L
|
|
Y T
|
|
} !}
|
|
ve s
|
|
) })_{\
|
|
ĠC ase
|
|
)| )\
|
|
})_{ +}\
|
|
^{+ }-\
|
|
})} .\
|
|
en tial
|
|
}}:=\ {\
|
|
E G
|
|
a ss
|
|
},\ ;\;
|
|
tri bu
|
|
Ġf orm
|
|
}}) <
|
|
ĠB V
|
|
)\, ,
|
|
{)} <
|
|
)< (
|
|
E H
|
|
g t
|
|
A F
|
|
}\ {(\
|
|
}\|_{ *
|
|
ĠE x
|
|
23 5
|
|
})) <
|
|
): \,
|
|
dr d
|
|
Co st
|
|
| )+
|
|
}= {
|
|
Ġ\[\ {
|
|
}^{* }\)
|
|
Ġ} ;\
|
|
}/ \|
|
|
})&= &
|
|
H o
|
|
)| }\]
|
|
ĠK L
|
|
,& (
|
|
Ġ:= -\
|
|
N n
|
|
big odot
|
|
}|\ \
|
|
}), ...,
|
|
}}[ -
|
|
up mu
|
|
}}\ ,\,\
|
|
}] ]\
|
|
)&= &\
|
|
when ever
|
|
p v
|
|
de al
|
|
Ġ\[ >\
|
|
re ct
|
|
}_{- }
|
|
76 8
|
|
o v
|
|
^{+ })\]
|
|
([ -
|
|
Ġ{* }(
|
|
H D
|
|
N K
|
|
ma ge
|
|
)}\ .\]
|
|
}] <\
|
|
/ |\
|
|
R ob
|
|
| (|
|
|
) })}
|
|
A r
|
|
S Q
|
|
Ġ }},
|
|
))\, ,\]
|
|
}} ],\
|
|
cal ly
|
|
}] [\
|
|
})| =|\
|
|
E X
|
|
\ }}^{\
|
|
ra nge
|
|
}| }+\
|
|
)- {\
|
|
E D
|
|
E F
|
|
Ġ hi
|
|
},\ ;\;\
|
|
R IS
|
|
] )^{\
|
|
c w
|
|
de pendent
|
|
00 9
|
|
Ġdeg ree
|
|
> _{
|
|
_{* }.\]
|
|
_{+ })
|
|
for e
|
|
}})\, .\]
|
|
Ġ }{|
|
|
}_{\ ,
|
|
}] }^{
|
|
q e
|
|
ll corner
|
|
Ġc d
|
|
Ġh ave
|
|
33 3
|
|
) }-(
|
|
] +(
|
|
_{\ _
|
|
})_{ |
|
|
11 5
|
|
\}\ }.\]
|
|
cent er
|
|
N I
|
|
w eak
|
|
var liminf
|
|
sq subset
|
|
\}\ .\]
|
|
k y
|
|
w z
|
|
}\ }\)
|
|
leq q
|
|
Ġ{ |\
|
|
}}=\ {(
|
|
st em
|
|
ĠD iff
|
|
(| |\
|
|
Ġconn ected
|
|
+ }_{
|
|
: -
|
|
L x
|
|
}\ })=
|
|
,- }\
|
|
MM D
|
|
( {}_{
|
|
Q C
|
|
}^{* }),\
|
|
{| }+
|
|
)| }{|\
|
|
O R
|
|
Ġd w
|
|
\[[ [
|
|
)}, &
|
|
Ġ9 8
|
|
S u
|
|
d C
|
|
Ġ ^{*
|
|
in ct
|
|
\, ;
|
|
}}:= (
|
|
Ġ multi
|
|
Ġ}\ |^{
|
|
Ġ^{ (\
|
|
Is om
|
|
! \,
|
|
ĠG r
|
|
Ġ4 1
|
|
})| }{\
|
|
0 14
|
|
f x
|
|
)\ ;\;\
|
|
)\, .\
|
|
f v
|
|
j u
|
|
me tric
|
|
ĠC C
|
|
)},\ ,
|
|
D t
|
|
U L
|
|
}^{* }|^{
|
|
{] }<\
|
|
23 6
|
|
leftarrow s
|
|
}) }^{-
|
|
}{ +}
|
|
)\ }}\
|
|
{(}\ {\
|
|
11 6
|
|
}_{+ },\]
|
|
Ġ\| (
|
|
]\! ]
|
|
]\! ]\]
|
|
, {
|
|
E C
|
|
b k
|
|
var Pi
|
|
^{* }}=
|
|
Ġi r
|
|
Ġp o
|
|
ĠPa rameter
|
|
}| },\
|
|
ĠC T
|
|
Ġ }))\
|
|
}} }\|_{
|
|
right leftarrows
|
|
Ġw e
|
|
\ )\
|
|
}}) &
|
|
un iv
|
|
Ġd m
|
|
ge bra
|
|
di c
|
|
R K
|
|
Ġ\( |\
|
|
)_{ [
|
|
{] }^{-
|
|
48 0
|
|
,* }_{
|
|
I G
|
|
| /\
|
|
}^{- })^{
|
|
}\| <
|
|
Ġgen era
|
|
L v
|
|
\| ^{-
|
|
}}) }(\
|
|
}}} <\
|
|
))= -
|
|
\; (
|
|
Ġ9 3
|
|
}]+ [\
|
|
) [-
|
|
Ġ )}(\
|
|
})^{ (\
|
|
\[\| {\
|
|
maxi mize
|
|
! (\
|
|
Ġ( |
|
|
... +
|
|
]{ }\
|
|
K l
|
|
f h
|
|
f w
|
|
+\ \
|
|
^{* }))\
|
|
{] }(\
|
|
11 7
|
|
, }\]
|
|
N F
|
|
u k
|
|
Ġ opt
|
|
}| ).\]
|
|
})}{\ |\
|
|
})\; ,\]
|
|
M V
|
|
| ),\]
|
|
}) )|
|
|
}^{* ,\
|
|
}& :=\
|
|
)}=\ |
|
|
&* &
|
|
o bj
|
|
}\ }|\
|
|
}}) },\]
|
|
,- (
|
|
Ġ7 2
|
|
R A
|
|
d D
|
|
Ġ }},\]
|
|
}{ -\
|
|
us p
|
|
Ġd V
|
|
- )\
|
|
}\ }-\
|
|
}=\ \
|
|
ge t
|
|
}^{* }\}\]
|
|
Ġt ran
|
|
triangleleft eq
|
|
E mb
|
|
N d
|
|
| }=
|
|
Ġ )|
|
|
}] \)
|
|
Ġt ot
|
|
{- -
|
|
}_{+ };
|
|
\|=\ |
|
|
t K
|
|
}] },\
|
|
}}) ]\
|
|
Re LU
|
|
Ġ7 0
|
|
}}^{+ }(\
|
|
C ol
|
|
j b
|
|
n il
|
|
}} ...\
|
|
))\ |\
|
|
dt dx
|
|
Ġfix ed
|
|
# \{\
|
|
. }}}{{\
|
|
Z Z
|
|
}^{* }|
|
|
\, +\,\
|
|
_{- })
|
|
10 3
|
|
^{+ })
|
|
}:\ ;
|
|
)\! =\!\
|
|
= ((
|
|
L f
|
|
R H
|
|
}\ })
|
|
lo op
|
|
^{- }}(
|
|
C d
|
|
t l
|
|
}^{- }_{\
|
|
Ġs qu
|
|
}}) ]\]
|
|
Ġconv ex
|
|
) })\|_{
|
|
D X
|
|
17 28
|
|
so c
|
|
) }}\,
|
|
Ġ cr
|
|
perf ect
|
|
)\, :\,\
|
|
]=\ {
|
|
0 21
|
|
m N
|
|
| }}{
|
|
Ġ\(\ |
|
|
}}:= (\
|
|
r h
|
|
re n
|
|
}}\,\ |\
|
|
)]\ ),
|
|
{| }>\
|
|
ĠA u
|
|
side set
|
|
d j
|
|
}} $
|
|
var triangle
|
|
ĠC d
|
|
Sp c
|
|
Ġcomp onent
|
|
Ġm n
|
|
iz ation
|
|
| :
|
|
\[\ {\{
|
|
_{* }}^{
|
|
$ }_{\
|
|
] }{(
|
|
b v
|
|
Ġ&= &\
|
|
! },\]
|
|
R W
|
|
Ġ= \]
|
|
_{* })^{
|
|
}}= {\
|
|
] }[
|
|
! ^{
|
|
N s
|
|
u es
|
|
le s
|
|
}:= [\
|
|
T U
|
|
)\ :
|
|
Ġn x
|
|
G G
|
|
N x
|
|
)) &
|
|
)) ),\]
|
|
Ġ+\ |\
|
|
6 18
|
|
A tt
|
|
R N
|
|
t es
|
|
Ġ eq
|
|
}} })=\
|
|
Ġ( [
|
|
}},\ ;
|
|
}}^{* }=\
|
|
s I
|
|
| }-\
|
|
^{* }=(
|
|
^{* };\
|
|
Ġ} &
|
|
M f
|
|
qu e
|
|
Ġ2 56
|
|
O L
|
|
Ġ ap
|
|
], [\
|
|
( .,
|
|
) })\\
|
|
A w
|
|
}} }).\]
|
|
li z
|
|
}} }(-
|
|
}] :=\
|
|
})+ \]
|
|
* (\
|
|
D ist
|
|
l c
|
|
l cl
|
|
Ġ })^{-
|
|
\ }<
|
|
\[\ {[
|
|
},\ ,\,\
|
|
^{* }\|
|
|
Ġd X
|
|
16 2
|
|
^{* }}+
|
|
K n
|
|
Ġ }}-
|
|
}\ }=\{\
|
|
ca use
|
|
ĠR ic
|
|
Ġg rad
|
|
Ġ:=\ {\
|
|
D W
|
|
K h
|
|
}})\ )
|
|
10 9
|
|
V u
|
|
| ^{-(
|
|
{| }_{(
|
|
Ġd p
|
|
ge s
|
|
,\, |
|
|
13 1
|
|
g u
|
|
{\| }|
|
|
Ġ4 3
|
|
du dv
|
|
Rob ba
|
|
ul corner
|
|
_{+ })\]
|
|
}_{* })\
|
|
}}< +\
|
|
6 00
|
|
i N
|
|
}} &-
|
|
}=\ {\{
|
|
ce n
|
|
dy ds
|
|
})\, (
|
|
g k
|
|
ho l
|
|
}\; =\;
|
|
: \{
|
|
}\ }\,.\]
|
|
}_{ [-
|
|
{\ }}\,\
|
|
fo ld
|
|
\[[ -
|
|
Ġma xi
|
|
P x
|
|
y e
|
|
rel y
|
|
) }}}{{\
|
|
N et
|
|
{( }\,
|
|
Ġ\[ [\
|
|
}] &
|
|
}] ;\
|
|
)+\ |\
|
|
an ti
|
|
$ ;}\\
|
|
\[( |
|
|
}. \\
|
|
ia nt
|
|
ale nt
|
|
$ }}}\
|
|
F R
|
|
M r
|
|
f il
|
|
| ,|\
|
|
}) _{*
|
|
}} ],\]
|
|
^{- })^{
|
|
}^{- ,
|
|
})| ,\]
|
|
):= -
|
|
| }{(
|
|
}{ }^{-
|
|
}^{* }}^{\
|
|
ĠA B
|
|
})) },\]
|
|
Ġ* }(
|
|
3 56
|
|
< _{
|
|
}^{* -
|
|
Sh t
|
|
$ }}_{
|
|
K R
|
|
}| }-
|
|
}}) )^{
|
|
}}= |
|
|
Ġin c
|
|
c N
|
|
var Psi
|
|
Ġm on
|
|
Ġ9 7
|
|
96 0
|
|
K N
|
|
M ul
|
|
Ġ\ .\]
|
|
\| <
|
|
}}) +(
|
|
Ġd im
|
|
ĠL i
|
|
\! :\!
|
|
4 32
|
|
K H
|
|
O C
|
|
}{ =}
|
|
la n
|
|
ll l
|
|
}| /\
|
|
co r
|
|
Ġ\[=\ {
|
|
+ }\]
|
|
h l
|
|
k c
|
|
11 8
|
|
Ġh y
|
|
\ },&\
|
|
m ot
|
|
}} /(
|
|
}}= \]
|
|
)] }{
|
|
measu re
|
|
E A
|
|
me s
|
|
{| }<\
|
|
Ġs c
|
|
})( -\
|
|
}|_{ (
|
|
Ġn p
|
|
sp in
|
|
}}\| \]
|
|
}_{- ,
|
|
}}^{* })\
|
|
si an
|
|
Ġ} ;
|
|
}}) }=\
|
|
)}| \]
|
|
Q T
|
|
c ed
|
|
}_{ =
|
|
\| }
|
|
}\, {
|
|
}})\ }\]
|
|
10 6
|
|
20 1
|
|
L HS
|
|
N B
|
|
l h
|
|
ra di
|
|
)= ((
|
|
_{- }+\
|
|
)| -\
|
|
Sp f
|
|
},\,\ ,\,
|
|
Ġwhen ever
|
|
] <
|
|
}\ },\\
|
|
hi ft
|
|
ĠH F
|
|
}* (\
|
|
a nt
|
|
ti v
|
|
}},\ ;\
|
|
}; {\
|
|
\}\ }\
|
|
Ġ rad
|
|
)\ |=
|
|
;\ ,\,
|
|
_{* })=\
|
|
\[[ (\
|
|
905 512
|
|
t C
|
|
^{* }}-
|
|
^{+ }}^{
|
|
o od
|
|
)}\ {
|
|
)) :\
|
|
{{ *
|
|
S m
|
|
Ġj k
|
|
Ġ5 4
|
|
ut e
|
|
Ġ left
|
|
Ġp t
|
|
}})^{ -\
|
|
Co ker
|
|
{)}\, ,\
|
|
] )+\
|
|
}{ -}
|
|
W h
|
|
c limit
|
|
)) }(\
|
|
_{* *
|
|
Ġinteg er
|
|
: \\
|
|
}^{* }=(
|
|
\, -\,
|
|
Ġk er
|
|
B H
|
|
R HS
|
|
g v
|
|
{ .}\
|
|
{\{ }\|
|
|
succ curlyeq
|
|
}}) |\]
|
|
)}{ }_{
|
|
ĠB o
|
|
\}\ !\
|
|
Re l
|
|
an n
|
|
^{** }(
|
|
M I
|
|
}\ }(
|
|
}= +\
|
|
_{[ -\
|
|
P re
|
|
h igh
|
|
Ġ sup
|
|
}) }}(
|
|
Ġc t
|
|
)| -|
|
|
ĠI nd
|
|
homotopy climit
|
|
SI NR
|
|
$ }^{\
|
|
0 24
|
|
J M
|
|
M t
|
|
de p
|
|
}_{\ ,\
|
|
}^{* }\|\
|
|
ĠD a
|
|
)] (\
|
|
)] \\
|
|
13 8
|
|
con n
|
|
Ġco st
|
|
3 24
|
|
Ġ }]\
|
|
}:=\ {(\
|
|
10 7
|
|
sk ew
|
|
Ġpa ir
|
|
X t
|
|
}^{* })}\
|
|
}\, ^{\
|
|
}; -
|
|
14 7
|
|
}^{[ -
|
|
Qu ot
|
|
x I
|
|
}\ )-
|
|
{( |
|
|
16 7
|
|
cy l
|
|
! /
|
|
! \]
|
|
+ (-\
|
|
\ };\
|
|
f p
|
|
| }}{\
|
|
text sf
|
|
})+ (-
|
|
17 5
|
|
}}\; ,\]
|
|
H z
|
|
}} }:\
|
|
)) ^
|
|
{)}\ ,\]
|
|
))\ )
|
|
22 4
|
|
01 9
|
|
Ġequ iv
|
|
F C
|
|
{) }&
|
|
Ġf i
|
|
\, ;\
|
|
Ġ4 7
|
|
A N
|
|
C k
|
|
ri s
|
|
ĠS h
|
|
01 8
|
|
}$ ,}\\
|
|
a in
|
|
i id
|
|
or y
|
|
))=\ {
|
|
Ġ7 5
|
|
,* }^{
|
|
3 11
|
|
b h
|
|
ti cal
|
|
}| &\
|
|
^{* }},\
|
|
_{- }\]
|
|
Ġ+\ |
|
|
- }^{\
|
|
O r
|
|
X A
|
|
\| >
|
|
ine ar
|
|
ĠAlg orithm
|
|
S cal
|
|
\ }),\]
|
|
}} })=
|
|
ĠMe an
|
|
Ġvec tor
|
|
v f
|
|
th ick
|
|
(\ !\
|
|
}}) :\
|
|
Ġ4 6
|
|
13 0
|
|
Ġ8 1
|
|
Ġsu rely
|
|
y l
|
|
}} }:=\
|
|
}}{ }_{\
|
|
00 000
|
|
}[\ {
|
|
}:= -
|
|
\; (\
|
|
or mal
|
|
Lo S
|
|
)}& =\
|
|
) }}\,\
|
|
Ġ}\ |_{\
|
|
_{+ })^{
|
|
})\, =\,
|
|
Ġ si
|
|
ho r
|
|
})=\ |\
|
|
Ġ }]
|
|
}|\ }\]
|
|
Ġwhi ch
|
|
. }}\
|
|
: {\
|
|
B a
|
|
] |^{
|
|
| _
|
|
}\, -\,
|
|
or der
|
|
))\ |^{
|
|
}\|\ ,
|
|
):=\ {(
|
|
diamond suit
|
|
Ġinf inite
|
|
Ġcond ition
|
|
% )
|
|
) })}\]
|
|
| )}
|
|
Ġ exist
|
|
Ġ\[+\ |\
|
|
}}}{\ |\
|
|
})& (
|
|
Ġ* }
|
|
C a
|
|
Ġ}\ {\
|
|
}& =(
|
|
_{+ ,\
|
|
{\{ }\,
|
|
\; ,\
|
|
)\| .\]
|
|
{\ #\
|
|
Ġf ac
|
|
}}\, (\
|
|
14 98
|
|
sti ma
|
|
ĠC l
|
|
ĠT ra
|
|
})| >
|
|
}}^{* },\
|
|
,* ,
|
|
s pace
|
|
{ >
|
|
}}) |_{
|
|
}^{+ }\\
|
|
|\, .\]
|
|
Ġel se
|
|
K G
|
|
i Y
|
|
Ġ ^{*}
|
|
la y
|
|
Ġ\( |
|
|
)& :=\
|
|
= &\
|
|
Q D
|
|
}+\ {
|
|
)) }+
|
|
)- (-
|
|
ĠL ip
|
|
Ġc n
|
|
em ph
|
|
Ġ\| (\
|
|
B N
|
|
c frac
|
|
}}^{ (-
|
|
/ [
|
|
A I
|
|
P X
|
|
{ ``
|
|
pri m
|
|
^{- }=\
|
|
}{\ (
|
|
\| -
|
|
}), -
|
|
14 6
|
|
)}+ (\
|
|
E I
|
|
b g
|
|
)} _
|
|
\[\| |
|
|
}> \]
|
|
+ +
|
|
J e
|
|
to n
|
|
{)}\ |_{
|
|
12 9
|
|
_{- }}(
|
|
}]\! ]\]
|
|
center dot
|
|
0 22
|
|
p li
|
|
Ġ |}\
|
|
Ġ proj
|
|
)\ ,\,
|
|
to tal
|
|
}] .\
|
|
}&\ |\
|
|
Ġb a
|
|
Ġb etween
|
|
}$ }\]
|
|
C ase
|
|
q b
|
|
Ġin d
|
|
})\, :\,
|
|
)^{* }=\
|
|
I K
|
|
R V
|
|
] })=\
|
|
] }\\
|
|
h D
|
|
:\ !\
|
|
ĠP r
|
|
Di sc
|
|
0 23
|
|
De s
|
|
}[\ ![\
|
|
})|\ ,\
|
|
&& &&
|
|
Reg ret
|
|
. }}}{{=}}\
|
|
G x
|
|
Ġ vertex
|
|
th en
|
|
ra nd
|
|
da ngle
|
|
Ġ{ }^{
|
|
)) },\
|
|
}\| }\]
|
|
Ġc losed
|
|
Ġs y
|
|
_{* }}(\
|
|
7 29
|
|
H N
|
|
a ng
|
|
f a
|
|
}\ }-
|
|
th o
|
|
ĠC E
|
|
\, _{
|
|
]\ .\]
|
|
H d
|
|
)^{* }=
|
|
}}^{+ }
|
|
}\|=\ |\
|
|
measure dangle
|
|
] [\
|
|
i rr
|
|
Ġ }),
|
|
^{* }}-\
|
|
ĠC F
|
|
Ġ6 6
|
|
( *
|
|
U C
|
|
Ġ\ ,\,\
|
|
)- |\
|
|
_{- }-\
|
|
ĠM od
|
|
Ġ )}.\]
|
|
in ing
|
|
^{* })}{
|
|
Ġd om
|
|
}}, [
|
|
}}+ \]
|
|
Ġre d
|
|
) }}|
|
|
N h
|
|
k z
|
|
p z
|
|
})\ |=\
|
|
er gy
|
|
})| <
|
|
prec sim
|
|
Ġ7 8
|
|
D ol
|
|
] ^
|
|
k A
|
|
}}\ #\
|
|
Ġg raph
|
|
{|}\ !\
|
|
}}^{* }}\
|
|
Tra ce
|
|
1 99
|
|
G rad
|
|
] )+
|
|
m is
|
|
}+ (-\
|
|
J K
|
|
m v
|
|
Ġ{ }^{\
|
|
pa th
|
|
}}+ [
|
|
6 25
|
|
t D
|
|
ga ther
|
|
ro ot
|
|
^{* }}+\
|
|
lu x
|
|
\ }=\{\
|
|
b it
|
|
wi st
|
|
un if
|
|
(- (\
|
|
)\, (\
|
|
Ġdist inct
|
|
9998 63
|
|
s cal
|
|
)}\ ;\
|
|
\|\ !\
|
|
ĠS et
|
|
Ġor d
|
|
! |
|
|
R o
|
|
V A
|
|
] )-
|
|
Ġ [-
|
|
ti o
|
|
Ġ\[ :=\
|
|
}: \]
|
|
}^{* }),\]
|
|
ble m
|
|
15 2
|
|
{/ }
|
|
3 22
|
|
Ġs ol
|
|
gather ed
|
|
h G
|
|
},\ ,(
|
|
Ġ}\ ;\
|
|
\|\ \
|
|
_{- })\]
|
|
}^{+ };
|
|
ĠR eg
|
|
}> -\
|
|
14 2
|
|
)\! .\]
|
|
ĠDa ta
|
|
=\ \
|
|
}}\, =\,\
|
|
}|< |
|
|
] )_{
|
|
m K
|
|
q m
|
|
u z
|
|
}) }}^{
|
|
}) )).\]
|
|
Ġ\( (-
|
|
}}: (
|
|
CV aR
|
|
D H
|
|
}| }+
|
|
om orphism
|
|
}^{+ }\|_{
|
|
)\, :=\,\
|
|
^{\# }(
|
|
. ,\
|
|
0 27
|
|
Ġ )},\
|
|
la nd
|
|
}|\ {
|
|
Ġm s
|
|
}\ }&\
|
|
)\| =\
|
|
64 8
|
|
C Y
|
|
| )+\
|
|
~ {
|
|
&= &\
|
|
Ġ&&& &
|
|
# (\
|
|
K x
|
|
a N
|
|
}{ {
|
|
ĠC PU
|
|
Ġs mooth
|
|
_{* }\|_{
|
|
{] }}{\
|
|
ab a
|
|
&* &*\\
|
|
}] \,.\]
|
|
}}) ^
|
|
,- }(\
|
|
ei ther
|
|
Ġsqu are
|
|
- ,
|
|
A Y
|
|
^{* }}.\]
|
|
te rm
|
|
u dx
|
|
}\ }}{
|
|
}}\ }_{\
|
|
}^{- })
|
|
11 9
|
|
}}\, |\
|
|
}< ...
|
|
L k
|
|
M H
|
|
P ri
|
|
la g
|
|
}([ -\
|
|
/ \|
|
|
n omial
|
|
Ġ }+(
|
|
Ġ ^{*}(
|
|
al se
|
|
}}) ,(
|
|
(( (
|
|
Ġ6 5
|
|
}+\| (
|
|
56 7
|
|
Ind Coh
|
|
ur corner
|
|
1498 15
|
|
j x
|
|
n M
|
|
_{ :,
|
|
op p
|
|
Ġn e
|
|
\[\| [
|
|
}< -\
|
|
Tr op
|
|
\[= \]
|
|
Ġ9 1
|
|
: &
|
|
\ }}}\
|
|
}] ),\]
|
|
)) >\
|
|
}\| >
|
|
ve d
|
|
/\ !\!/
|
|
10 10
|
|
] ),
|
|
}) )=(\
|
|
}} ]+\
|
|
^{* })_{
|
|
}] }=
|
|
Ġg iven
|
|
... \\
|
|
Ġ5 7
|
|
Ġ5 8
|
|
})) ]\]
|
|
A J
|
|
}^{ {}^{(
|
|
)}\ ,\]
|
|
\, {
|
|
Ġ5 5
|
|
xx xx
|
|
+ ,
|
|
V E
|
|
c L
|
|
Ġ\ }_{
|
|
}> -
|
|
Ġre al
|
|
tribu tion
|
|
) }^{*}\
|
|
S e
|
|
\ },\,
|
|
})_{\ #}\
|
|
19 6
|
|
L h
|
|
Ġ })}{
|
|
\| }\]
|
|
}&\ |
|
|
)] )\
|
|
}_{- },\
|
|
37 5
|
|
Ġme an
|
|
0 34
|
|
B O
|
|
}\ }}.\]
|
|
{) };\]
|
|
ci t
|
|
)|\ \
|
|
Ġ$ |
|
|
Ġ9 2
|
|
nor mal
|
|
) [(
|
|
Ġ sum
|
|
Ġ |^{\
|
|
^{* }))\]
|
|
}^{* }/
|
|
}_{* }}\
|
|
L d
|
|
| )^{-\
|
|
ĠC S
|
|
)( |\
|
|
In f
|
|
Ġle ast
|
|
] ;\]
|
|
}| }(\
|
|
Ġe i
|
|
ĠR F
|
|
}_{- }}\
|
|
99 99
|
|
here nt
|
|
Ġcontain s
|
|
] )}
|
|
s ig
|
|
ĠC A
|
|
}\, :=\,\
|
|
13 7
|
|
|}{\ (
|
|
Cu rl
|
|
E V
|
|
Ġ\ #\
|
|
me d
|
|
}^{+ })=\
|
|
{\{ }|\
|
|
}]\! ]\
|
|
}) }:
|
|
Ġf d
|
|
{\{ }\,\
|
|
): |
|
|
01 7
|
|
Ġmeasu rable
|
|
. }&
|
|
W A
|
|
| }}
|
|
Ġ }}=
|
|
}}| .\]
|
|
Co nt
|
|
N r
|
|
\ }}-\
|
|
h b
|
|
Ġ tri
|
|
le d
|
|
}] }|
|
|
})^{ |
|
|
ĠS ta
|
|
5 000
|
|
T W
|
|
c g
|
|
q d
|
|
v E
|
|
^{ +\
|
|
)| )
|
|
ĠP o
|
|
})) )=
|
|
Ġ7 6
|
|
\( {}^{\
|
|
] _{(
|
|
ra cle
|
|
)\ ),
|
|
}] :\
|
|
Ġe ss
|
|
ĠH S
|
|
)_{ |\
|
|
)] ,
|
|
2 64
|
|
k v
|
|
_{* })=
|
|
Ġin dependent
|
|
Ġcon ver
|
|
fin ition
|
|
Cor r
|
|
A lt
|
|
j d
|
|
}|\ |
|
|
ĠOr der
|
|
, >
|
|
D x
|
|
O bj
|
|
P Sh
|
|
m z
|
|
})\ {
|
|
Ġ1 13
|
|
^{+ }+\
|
|
]+ [\
|
|
F I
|
|
}\ }}{\
|
|
ma n
|
|
}^{+ })}\
|
|
15 5
|
|
' '
|
|
8 998
|
|
}\ }).\]
|
|
})\ }^{
|
|
}| )+
|
|
}\, {}^{\
|
|
}}_{ {\
|
|
ĠT V
|
|
})| |^{
|
|
Ġ5 2
|
|
Ġco efficient
|
|
| +(
|
|
Ġ ))^{
|
|
Ġ& (\
|
|
}\| }{\|
|
|
Ġh e
|
|
{\{ }\|\
|
|
* }_{\
|
|
y w
|
|
}) }^
|
|
Ġ= &-\
|
|
ĠV alue
|
|
check mark
|
|
18 4
|
|
t S
|
|
Ġ }}{(
|
|
}_{- }^{\
|
|
con j
|
|
Ġad j
|
|
; -\
|
|
S ta
|
|
S tr
|
|
W E
|
|
{) }:=\
|
|
}] &\
|
|
{] }\,,\]
|
|
11 00
|
|
}=( (\
|
|
17 6
|
|
sti ff
|
|
r N
|
|
Ġ li
|
|
}^{- }}{
|
|
Ġ\[= [\
|
|
SA T
|
|
B ar
|
|
G K
|
|
_{ .
|
|
^{- })
|
|
De n
|
|
}}) =-\
|
|
)( (\
|
|
16 9
|
|
}_{+ })}\
|
|
Ġdi am
|
|
Ġro ot
|
|
0 28
|
|
F A
|
|
s N
|
|
| ),\
|
|
Ġ ga
|
|
Ġ end
|
|
Ġ }}|
|
|
}) )\,.\]
|
|
era tion
|
|
Ġd d
|
|
ĠR ate
|
|
14 3
|
|
verti ces
|
|
. }}{{\
|
|
m y
|
|
}} })^{\
|
|
}{ }
|
|
}}_{ =
|
|
Th e
|
|
23 2
|
|
)\! =\!
|
|
T d
|
|
] }}(
|
|
Ġ can
|
|
era tions
|
|
15 9
|
|
ome o
|
|
]\! ]_{
|
|
D ir
|
|
S z
|
|
}} }}(\
|
|
}^{* }\,
|
|
}\| )\
|
|
:=\ !\
|
|
})) /\
|
|
en cy
|
|
O S
|
|
Q A
|
|
}) }}{{\
|
|
}}(\ {\
|
|
}\| }
|
|
ĠI V
|
|
)\, =\
|
|
)] )\]
|
|
,- }^{
|
|
{{ }_{
|
|
}}^{* },
|
|
tharpo ons
|
|
{: }\
|
|
V V
|
|
c j
|
|
^{+ },\]
|
|
22 3
|
|
100 00
|
|
Ġco r
|
|
0000 0000
|
|
8998 49
|
|
I nn
|
|
\ }^{-
|
|
Ġ ca
|
|
_{ +\
|
|
{) }=-
|
|
\| |\
|
|
})) :
|
|
T ri
|
|
W W
|
|
p y
|
|
t Y
|
|
Ġ quad
|
|
ra t
|
|
}{ **
|
|
})_{ [
|
|
:= [
|
|
)& =-\
|
|
Att n
|
|
, ..,
|
|
h n
|
|
m C
|
|
Ġ prod
|
|
}} }>
|
|
}}) }=
|
|
}& *
|
|
}& ...&
|
|
}:=\ |\
|
|
Ġno rm
|
|
$ }}}{\
|
|
8 64
|
|
G Sp
|
|
L t
|
|
j N
|
|
{ +}\
|
|
)) ,(
|
|
Ġd S
|
|
ĠM ax
|
|
23 3
|
|
Ġimp lies
|
|
n w
|
|
}}\ }
|
|
var iant
|
|
_{* }|^{
|
|
ĠV ol
|
|
}}= |\
|
|
bi as
|
|
) }}[
|
|
al t
|
|
}| +(
|
|
\| [\
|
|
0 30
|
|
E B
|
|
c lip
|
|
s hort
|
|
[\ !\
|
|
}}) .\
|
|
$ }(
|
|
d J
|
|
right lef
|
|
\| +\|\
|
|
un c
|
|
}}| =\
|
|
N c
|
|
i M
|
|
t P
|
|
}) })=
|
|
Ġs mall
|
|
}:\ ;\
|
|
Ġ\(\ |\
|
|
rightlef tharpoons
|
|
; |
|
|
}) )|^{
|
|
ĠC k
|
|
^{( -\
|
|
})=\ |
|
|
)( [
|
|
Ġs tep
|
|
}\|\ ,\
|
|
;\;\ ;\;\
|
|
ian ce
|
|
B v
|
|
C X
|
|
k B
|
|
)- [
|
|
}}) ,\\
|
|
)} ;\]
|
|
}^{+ }}\]
|
|
Ġ5 1
|
|
\% )
|
|
\ }|=
|
|
| }^{\
|
|
}) }:\
|
|
Ġ0 1
|
|
Ġc lass
|
|
Ġp eri
|
|
Ġequiv alent
|
|
G T
|
|
g ra
|
|
o ng
|
|
}^{ !
|
|
}}) }+\
|
|
uni formly
|
|
- }(\
|
|
Ġ ]_{
|
|
Big m
|
|
}\, +\
|
|
Ġ\[=\ ,\
|
|
_{+ }.\]
|
|
})) )=\
|
|
}{*}{\ (\
|
|
Ġdo es
|
|
ĠMo del
|
|
F it
|
|
] ,\,\
|
|
] \,,\
|
|
x h
|
|
Ġ ss
|
|
{) }/\
|
|
})+ |\
|
|
em b
|
|
33 6
|
|
cl ub
|
|
M B
|
|
u y
|
|
}) })=\
|
|
Ġ1 20
|
|
) }]=
|
|
S at
|
|
}) }=(
|
|
me an
|
|
{) }/
|
|
32 6
|
|
A g
|
|
] \|\
|
|
a ge
|
|
Ġ }^{*}\
|
|
}}= :
|
|
))^{ (
|
|
18 9
|
|
|\, |
|
|
Ġdef ined
|
|
Ġma ny
|
|
Ra nge
|
|
Ġtw o
|
|
d ig
|
|
Ġ right
|
|
^{ =
|
|
}| =(
|
|
ĠD f
|
|
,\, (\
|
|
val ue
|
|
& ...&
|
|
F B
|
|
^{- {\
|
|
)] }{\
|
|
vi al
|
|
! -\!
|
|
V I
|
|
n I
|
|
Ġt rue
|
|
{)}\ !\
|
|
club suit
|
|
S tar
|
|
W D
|
|
}\ {|\
|
|
qu ence
|
|
^{- }-
|
|
)}, ...,
|
|
|| (
|
|
Ġ7 7
|
|
r T
|
|
u al
|
|
Ġ app
|
|
^{* })}
|
|
\, =\
|
|
* }\]
|
|
A L
|
|
n et
|
|
w ork
|
|
su re
|
|
or el
|
|
{\{}\ {
|
|
T Q
|
|
U T
|
|
] ))\
|
|
c usp
|
|
o dic
|
|
}} ],
|
|
}\, {}_{
|
|
\, )\
|
|
{| }-\
|
|
ge om
|
|
)}( [
|
|
})+ {\
|
|
R ed
|
|
a xi
|
|
u i
|
|
}\ }]\]
|
|
&& &\
|
|
,+ }^{
|
|
4527 6
|
|
\ }}-
|
|
Ġ })}{\
|
|
}) }(-
|
|
}} }}.\]
|
|
si s
|
|
}& :=
|
|
ĠM SE
|
|
L IS
|
|
Q S
|
|
u h
|
|
}) }},\]
|
|
Ġ\[ -(\
|
|
^{* })\|_{
|
|
Ġ( (\
|
|
Ġb i
|
|
14 8
|
|
0 35
|
|
3 32
|
|
A c
|
|
M v
|
|
] }}{\
|
|
] \|_{\
|
|
Ġ )/
|
|
^{- })\]
|
|
}\, [\
|
|
),\ |\
|
|
ĠE q
|
|
Ġ(\ %)
|
|
,- )\
|
|
,+ }_{
|
|
. (\
|
|
T B
|
|
b ad
|
|
q j
|
|
}( {}^{
|
|
=\ {(\
|
|
Ġx x
|
|
}), {\
|
|
}; [
|
|
16 4
|
|
{{ }^{
|
|
)! }{\
|
|
Ġ7 9
|
|
Ġ&= &
|
|
8 45276
|
|
I f
|
|
] ))\]
|
|
i K
|
|
}| }=
|
|
ĠT otal
|
|
_{* }|\
|
|
}; (\
|
|
24 8
|
|
V al
|
|
v r
|
|
| )}{
|
|
in dex
|
|
ĠM L
|
|
)! !
|
|
S K
|
|
!\ ,\
|
|
) }]^{
|
|
= &
|
|
c lo
|
|
co herent
|
|
}& |
|
|
\! (
|
|
}}& (
|
|
28 0
|
|
})^{* }=
|
|
# }
|
|
n D
|
|
{( }-(
|
|
p g
|
|
ĠC s
|
|
}/ |
|
|
})- {\
|
|
Ġ+ |\
|
|
Ġ5 3
|
|
Ġto tal
|
|
P CA
|
|
Q Q
|
|
| [\
|
|
_{ ;
|
|
Ġ6 7
|
|
{, }\\
|
|
$, }\]
|
|
Ġdi mension
|
|
Ġsp e
|
|
: \|\
|
|
F X
|
|
f s
|
|
v y
|
|
v z
|
|
at ed
|
|
\| )^{
|
|
Ġd A
|
|
Ġe igen
|
|
Ġr s
|
|
&\ ,\
|
|
ĠU n
|
|
}\; (\
|
|
Ġ8 5
|
|
G O
|
|
}} }\,,\]
|
|
}\| -\
|
|
_{* })(
|
|
}_{+ }}(
|
|
})\, {\
|
|
Ġ5 9
|
|
})) ]\
|
|
lu e
|
|
no break
|
|
}\# _{
|
|
Ġpar t
|
|
$ })\
|
|
Ġk t
|
|
\[\| [\
|
|
Ġg r
|
|
\[[\ ![
|
|
Ġ\, {\
|
|
S i
|
|
a ut
|
|
| },
|
|
Ġ rel
|
|
}) )]
|
|
ga tive
|
|
ĠM at
|
|
^{+ }}{
|
|
16 5
|
|
$ };\\
|
|
F e
|
|
i th
|
|
y f
|
|
Ġ }^{(\
|
|
{\ }}\,,\]
|
|
big star
|
|
}}+ {\
|
|
Ġg roup
|
|
}}[ |
|
|
ne ss
|
|
88 6
|
|
) }]=\
|
|
H g
|
|
\ }\,,\
|
|
k ij
|
|
Ġ ve
|
|
Ġf ree
|
|
, {}^{
|
|
. }\\
|
|
w y
|
|
}} }<
|
|
}}\ ,\,
|
|
ĠC a
|
|
re du
|
|
ĠB C
|
|
})- |
|
|
}})\ |_{\
|
|
Ġ6 8
|
|
}})\, ,\]
|
|
ective ly
|
|
G en
|
|
M n
|
|
Q H
|
|
h j
|
|
p oint
|
|
t V
|
|
ph ys
|
|
^{- }\]
|
|
)) }+\|
|
|
})= :
|
|
)| }{(
|
|
cccc ccccc
|
|
pe ri
|
|
M u
|
|
Ġ low
|
|
}+ ((
|
|
er y
|
|
}^{- }.\]
|
|
\|_{ {\
|
|
}^{* }[\
|
|
), ...,\
|
|
it er
|
|
}]- [\
|
|
H y
|
|
n subseteq
|
|
Ġ subset
|
|
^{* })}{\
|
|
Ġt est
|
|
}}) ),\]
|
|
15 7
|
|
]= (\
|
|
Ġ6 3
|
|
+ _{
|
|
I O
|
|
\ })}\
|
|
q y
|
|
{\ }}\,
|
|
Ġ& +(
|
|
Ġb lock
|
|
Ġme thod
|
|
) }}}{\
|
|
H u
|
|
I A
|
|
] }}{
|
|
}}^{ [\
|
|
ĠC K
|
|
dt d
|
|
Ġ7 3
|
|
36 8
|
|
supset neq
|
|
)\; =\;
|
|
i on
|
|
k H
|
|
le v
|
|
ar m
|
|
ex act
|
|
ĠC H
|
|
}^{* }&\
|
|
})^{ |\
|
|
)},\ ,\
|
|
25 7
|
|
Ġ8 4
|
|
)=- (\
|
|
x b
|
|
Ġ cu
|
|
us t
|
|
{)}\ ;
|
|
ĠD F
|
|
}_{+ }=\
|
|
20 8
|
|
}}] -\
|
|
c M
|
|
Ġ )}+\
|
|
ĠT ype
|
|
_{* })-
|
|
): (\
|
|
en v
|
|
}},\ {
|
|
))\ ;
|
|
let e
|
|
21 5
|
|
Ġ8 9
|
|
})_{+ }^{
|
|
T Y
|
|
^{- }=
|
|
co ev
|
|
:=\ ,
|
|
)] }
|
|
)] =[
|
|
Ġ7 4
|
|
}<... <
|
|
T E
|
|
b X
|
|
Ġ ]}\
|
|
)}\ !\
|
|
ce ss
|
|
})< +\
|
|
)^{+ }
|
|
}|+|\ {
|
|
Ġmin i
|
|
\| }{\|
|
|
}\| |
|
|
<\ ,\
|
|
Ġin dex
|
|
Ġ6 2
|
|
0 48
|
|
J S
|
|
] )-\
|
|
i P
|
|
v c
|
|
Ġ subject
|
|
{\ }}.\
|
|
)+ [\
|
|
Ġk x
|
|
ĠS E
|
|
Ġlo ss
|
|
U f
|
|
] }:=\
|
|
)) :=
|
|
}\, _{\
|
|
}^{\# }\
|
|
scri ption
|
|
! }\,\
|
|
H od
|
|
\ }(\
|
|
^{ !}
|
|
ĠT x
|
|
}^{+ })=
|
|
}), [
|
|
tr y
|
|
)}}\ \
|
|
_{ =
|
|
}) )}(
|
|
}) )+(
|
|
^{- }+
|
|
Ġn ew
|
|
}[ ]
|
|
ĠE xp
|
|
}(- (
|
|
15 4
|
|
))- (\
|
|
|< |
|
|
Y M
|
|
Ġ operator
|
|
Ġ )}_{
|
|
Ġ }}\,\
|
|
|\ |_{
|
|
)= (-\
|
|
}] |
|
|
{= }\
|
|
FP dim
|
|
M G
|
|
y u
|
|
_{ !}(
|
|
)}_{ (\
|
|
Ġ8 8
|
|
G raph
|
|
J u
|
|
K u
|
|
] _{-
|
|
l x
|
|
m T
|
|
)\ {\
|
|
)| (\
|
|
dt ds
|
|
ĠCo v
|
|
asi coherent
|
|
{{* }}{{\
|
|
- },
|
|
E t
|
|
Ġ under
|
|
ma g
|
|
un t
|
|
}), -\
|
|
13 9
|
|
Ġ6 9
|
|
\! [
|
|
36 5
|
|
S oc
|
|
U R
|
|
] ^{-\
|
|
] ]_{
|
|
}, ..,
|
|
\|_{ *}^{
|
|
)) }+\|\
|
|
}& &&\\
|
|
19 8
|
|
Ġno de
|
|
] }\,\
|
|
}_{ (-\
|
|
}: &
|
|
})=\ \
|
|
}& {\
|
|
15 3
|
|
)\| <\
|
|
) }}}{
|
|
, }
|
|
C hi
|
|
H omeo
|
|
L K
|
|
}} }+\|
|
|
big times
|
|
}}{ =}
|
|
Ġi i
|
|
}}= :\
|
|
Ġw eight
|
|
Ad j
|
|
las si
|
|
F ree
|
|
t I
|
|
Ġ })(\
|
|
}} ]+
|
|
la st
|
|
))\ |
|
|
Ġw t
|
|
}})=\ {
|
|
Ġre pre
|
|
\ }})\
|
|
me r
|
|
})= -(
|
|
_{- }}^{
|
|
}^{+ })^{\
|
|
Ġr ot
|
|
})| (
|
|
})) &\
|
|
Ġ8 2
|
|
Lo ss
|
|
Ad m
|
|
Ġra nd
|
|
A Z
|
|
K B
|
|
g lo
|
|
i D
|
|
Ġ& =(\
|
|
^{* }}}{
|
|
}_{+ }}\]
|
|
}:= {\
|
|
! },\
|
|
T z
|
|
b cd
|
|
Ġ pi
|
|
}\ {-
|
|
Ġs ample
|
|
^{+ }|^{
|
|
ba se
|
|
)]\ !
|
|
/ {\
|
|
}{ [\
|
|
)\ (\
|
|
\{ [\
|
|
]\ ;
|
|
}}+ (-
|
|
}}| +
|
|
}* }\
|
|
be cause
|
|
Ġelement s
|
|
L Mod
|
|
P h
|
|
S pa
|
|
)}= [
|
|
19 5
|
|
Ġ:= (\
|
|
L n
|
|
Ġ row
|
|
ra tic
|
|
\|_{ (\
|
|
}\, ;
|
|
}\, -\,\
|
|
ing s
|
|
35 8
|
|
}}}{{= }}(
|
|
Ġpar ti
|
|
Ġmeasu re
|
|
! \{
|
|
H x
|
|
] )(
|
|
i ll
|
|
q v
|
|
+\ {
|
|
Ġp ower
|
|
32 8
|
|
Ran k
|
|
L N
|
|
L im
|
|
R X
|
|
] )}^{
|
|
n C
|
|
| )=\
|
|
)\ |}\
|
|
}{\ (\
|
|
}| }-\
|
|
^{* }}}
|
|
}] {\
|
|
};\ ,\,
|
|
}}\, |\,
|
|
15 8
|
|
)]\ ,\
|
|
tu re
|
|
}}^{+ }\]
|
|
3 23
|
|
E T
|
|
d ro
|
|
i X
|
|
}} }:
|
|
^{* }[\
|
|
16 6
|
|
})^{* }=\
|
|
0 40
|
|
z ero
|
|
}\, /
|
|
00 10
|
|
}^{+ }}{
|
|
cy cle
|
|
black triangle
|
|
h w
|
|
nd ard
|
|
li c
|
|
{{ }^{\
|
|
dig amma
|
|
] )}\]
|
|
l ct
|
|
w hi
|
|
Ġ )).\]
|
|
}) &-
|
|
}^{* }=(\
|
|
)| }.\]
|
|
}^{+ ,\
|
|
con stant
|
|
02 6
|
|
succ sim
|
|
)_{+ }
|
|
D U
|
|
i ed
|
|
k M
|
|
re al
|
|
_{+ }}{\
|
|
}\!\ !\!
|
|
Map s
|
|
Lin k
|
|
Ġbound ary
|
|
F N
|
|
] -(
|
|
}\ {\|
|
|
})\ },\
|
|
}] )+\
|
|
}^{* }/\
|
|
Ġa bs
|
|
}\| )\]
|
|
Ġ\( >
|
|
_{* }}{\
|
|
\,\ {
|
|
^{+ }}(\
|
|
dy dz
|
|
}< _{
|
|
) })|\
|
|
E is
|
|
Ġ nd
|
|
}] |^{
|
|
tri ct
|
|
ĠC I
|
|
Ġt n
|
|
Ġs tr
|
|
})| >\
|
|
Ġ6 1
|
|
tion al
|
|
Sp d
|
|
})\| _
|
|
Ġequ ation
|
|
E ff
|
|
)| ,|
|
|
})+\ |\
|
|
eigh bo
|
|
{: }
|
|
Ġ }))\]
|
|
}(\ ,
|
|
Ġ\[ +|
|
|
\,\ ,\,
|
|
Ġy es
|
|
&& &
|
|
F V
|
|
L emma
|
|
q T
|
|
{ }^{*}\
|
|
}^{+ }:=\
|
|
Ġma p
|
|
. }}
|
|
T ail
|
|
in st
|
|
da te
|
|
})\ |.\]
|
|
)) )-\
|
|
ci al
|
|
ĠS t
|
|
)}( -\
|
|
})| -|
|
|
)}| |\
|
|
ni form
|
|
orphi c
|
|
C U
|
|
D o
|
|
x d
|
|
}\ }}|
|
|
ti mal
|
|
tar get
|
|
Ġ} <\
|
|
Ġ= -(\
|
|
_{* };
|
|
{\| }|\
|
|
17 8
|
|
Ġ7 1
|
|
Ġbo th
|
|
C ard
|
|
f c
|
|
Ġ line
|
|
Ġ vertices
|
|
_{ |_{
|
|
}|\ }\
|
|
Ġd q
|
|
}}{( |
|
|
56 0
|
|
\ }|.\]
|
|
i J
|
|
n P
|
|
x r
|
|
Ġ })}
|
|
Ġ hom
|
|
sum ption
|
|
^{* }]\
|
|
{(}\ !\
|
|
=- (\
|
|
})] \\
|
|
33 1
|
|
Ġoth er
|
|
) }}\|
|
|
\ &
|
|
\ }]\
|
|
q N
|
|
lo cal
|
|
Ġ& \\
|
|
ver se
|
|
}^{( -\
|
|
)}{ }^{\
|
|
Ġc c
|
|
_{- ,\
|
|
\[\| |\
|
|
}_{* },
|
|
\% **
|
|
X P
|
|
] ]=
|
|
)\ }}
|
|
)}\ {\
|
|
}}^{ {}^{\
|
|
}: &\
|
|
)^{\ #
|
|
ĠA C
|
|
st ep
|
|
dy d
|
|
\# _{
|
|
}+... +\
|
|
ke w
|
|
D K
|
|
E v
|
|
R I
|
|
T m
|
|
\ }})\]
|
|
q i
|
|
Ġ ^{+
|
|
}| }{(
|
|
}}\, ,
|
|
)},\ ;
|
|
)}=\ {\
|
|
* ,
|
|
}\ }\,,\]
|
|
}^{* }}=\
|
|
}\,\ |\,\
|
|
19 4
|
|
19 7
|
|
c ell
|
|
c cu
|
|
i F
|
|
x s
|
|
}, (-
|
|
})\ }=\
|
|
), |
|
|
Ġ\[= -(
|
|
20 48
|
|
) }))
|
|
s T
|
|
se e
|
|
}}| +\
|
|
)> (
|
|
)\! ,\]
|
|
\,(\ ,
|
|
ML E
|
|
G B
|
|
\ }})
|
|
] }\,
|
|
}| )^{-
|
|
Ġb ut
|
|
}* |\
|
|
S y
|
|
X u
|
|
\ }]\]
|
|
j oint
|
|
k Q
|
|
}\ }}(\
|
|
}) ]}\
|
|
}) [-
|
|
op en
|
|
)}\ }.\]
|
|
^{* }]
|
|
}^{* })}{
|
|
{)}\ ;\
|
|
ĠS e
|
|
}^{+ }|^{
|
|
_{+ }\|_{
|
|
Ġh igh
|
|
}}^{* }-\
|
|
;\;\ ;
|
|
pa ra
|
|
}^{* };\
|
|
}}| +|
|
|
* )\
|
|
C ay
|
|
F f
|
|
\ }}_{
|
|
] \|
|
|
b er
|
|
}_{ {
|
|
}_{\ !
|
|
\) .
|
|
})^{- (
|
|
})\, ,
|
|
Ġ\[+ |\
|
|
}\; :\;
|
|
)* (
|
|
Ġsatisf ying
|
|
G E
|
|
Ġd R
|
|
Ġo bs
|
|
Ġsa me
|
|
0 45
|
|
se mi
|
|
_{* })+\
|
|
Ġb d
|
|
Ġal g
|
|
= (-\
|
|
K F
|
|
i cal
|
|
^{* }})
|
|
]\ ,\]
|
|
_{* })}\
|
|
Ġp q
|
|
})_{ |\
|
|
)^{- }\
|
|
}(- )\
|
|
)}, (
|
|
| )|\
|
|
}^{* }))\
|
|
\, -\,\
|
|
)}( |
|
|
}^{+ +
|
|
+| |
|
|
}}^{* })\]
|
|
25 5
|
|
den ti
|
|
\ };
|
|
co rr
|
|
}] ),\
|
|
{)}\ !
|
|
less approx
|
|
96 8
|
|
})= :\
|
|
)| &\
|
|
}[\ ,\
|
|
})\, :\,\
|
|
\[= (-
|
|
))}\ ,\
|
|
9 00
|
|
= +\
|
|
J N
|
|
}| ),\]
|
|
}})^{ (
|
|
Ġ8 7
|
|
30 4
|
|
})}=\ |\
|
|
Ġdiv i
|
|
}]\! ]_{
|
|
A k
|
|
I B
|
|
K f
|
|
\ }&
|
|
Ġ )}}\
|
|
{\ }}+
|
|
De c
|
|
_{- })^{
|
|
Ġ$ (\
|
|
)}= (-
|
|
34 6
|
|
Ġla y
|
|
3 15
|
|
4 20
|
|
E R
|
|
S ur
|
|
c tr
|
|
f y
|
|
r A
|
|
}( {}_{
|
|
}}\ },\
|
|
)}{ [
|
|
^{+ +
|
|
P O
|
|
ex c
|
|
|^{ |\
|
|
^{* }{\
|
|
}] )^{\
|
|
}^{* })(\
|
|
)} }_{\
|
|
]\ },\]
|
|
})) .\
|
|
)\| +\
|
|
}) ):=\
|
|
})\ }_{\
|
|
^{* }}|
|
|
)) )-
|
|
Ġ\( +
|
|
22 8
|
|
}_{* }\]
|
|
},\, |
|
|
Ġ8 3
|
|
}}] (\
|
|
XY Z
|
|
}! }\]
|
|
! }}\
|
|
: ,\
|
|
F ind
|
|
a T
|
|
| })\
|
|
}}{ ||
|
|
\| ,
|
|
)) ,&\
|
|
)| :
|
|
) })=(
|
|
: &\
|
|
E rror
|
|
f ind
|
|
h am
|
|
}} ])\
|
|
la w
|
|
}] )}\
|
|
Ġi h
|
|
}^{+ }}{\
|
|
}^{+ })_{
|
|
,\, |\
|
|
,+ }
|
|
78 4
|
|
N u
|
|
s L
|
|
in ition
|
|
)\ })\]
|
|
}| ||
|
|
nu ll
|
|
Ġ} >
|
|
ca y
|
|
}), ...,\
|
|
^{*}\ !
|
|
}> _{
|
|
}< (\
|
|
^{\# }\
|
|
Ġfunction s
|
|
Ġsta te
|
|
] }}\]
|
|
g m
|
|
q f
|
|
|\ }\]
|
|
Ġ} /\
|
|
ĠL ie
|
|
Ġc e
|
|
^{*}( (
|
|
con s
|
|
lef tharpoonup
|
|
}}: (\
|
|
! }=
|
|
w a
|
|
\, +
|
|
Ġt x
|
|
})}\ }\]
|
|
Ġ\, (\
|
|
/ /
|
|
ti es
|
|
\| )\]
|
|
ĠS H
|
|
18 5
|
|
Ġsin ce
|
|
$ }\}.\]
|
|
u rs
|
|
}} })_{
|
|
})\ }=
|
|
{) }},\]
|
|
}] }^{\
|
|
{\{ }{\
|
|
)}=\ |\
|
|
black lozenge
|
|
radi ent
|
|
C p
|
|
Ġ }}}
|
|
)^{ (|
|
|
ro l
|
|
)) ,&
|
|
ci ble
|
|
}}] )\]
|
|
tra ns
|
|
Ġsy stem
|
|
c R
|
|
h m
|
|
k f
|
|
{[ (
|
|
)}+ |
|
|
27 6
|
|
arc tanh
|
|
( {}^{\
|
|
R U
|
|
T G
|
|
c H
|
|
Ġ ]^{
|
|
Ġ curve
|
|
in n
|
|
}}) }{(
|
|
pro xi
|
|
):=\ |
|
|
16 1
|
|
25 2
|
|
\( {}_{\
|
|
m R
|
|
rc ll
|
|
)+\ \
|
|
ĠN A
|
|
}}- |
|
|
)] \,
|
|
14 9
|
|
20 11
|
|
|| |_{
|
|
)! \]
|
|
}): (\
|
|
)$ }.\]
|
|
- \]
|
|
f inite
|
|
| }\|
|
|
to l
|
|
}] >
|
|
}] },
|
|
{| }>
|
|
B s
|
|
] })=
|
|
t E
|
|
}) )|\]
|
|
}) ;\\
|
|
\|_{ -
|
|
Ġ} })\]
|
|
bul k
|
|
})( |
|
|
)}_{ [
|
|
|| }
|
|
18 8
|
|
_{\_ }
|
|
N q
|
|
s rc
|
|
}\ }:
|
|
}} }]\
|
|
am il
|
|
}] )_{
|
|
_{( (
|
|
) })|
|
|
t J
|
|
Ġ })_{\
|
|
Ġ }+\|\
|
|
}}) -(
|
|
00 11
|
|
}=( {\
|
|
)})\ |^{
|
|
99 5
|
|
)^{* }(\
|
|
& +
|
|
M p
|
|
f b
|
|
o in
|
|
ro n
|
|
ro ugh
|
|
ĠG en
|
|
flo w
|
|
Ġ4 00
|
|
22 0
|
|
}}^{- }
|
|
36 7
|
|
Ġse c
|
|
E d
|
|
F a
|
|
;\ {
|
|
Ġf irst
|
|
ĠS M
|
|
{[ }[
|
|
{|}\ {
|
|
)] }(
|
|
Ġ\[+\ |
|
|
Ġ\[+ (-
|
|
)< -
|
|
9 45
|
|
U p
|
|
g B
|
|
| =(
|
|
}) ),\\
|
|
)) }^{\
|
|
}\| [
|
|
Ġd g
|
|
lus ter
|
|
}^{+ };\
|
|
26 8
|
|
ĠProp osition
|
|
0 33
|
|
R y
|
|
U S
|
|
\ }),\
|
|
i rc
|
|
Ġ |_{\
|
|
}) )-(
|
|
}(\ !(
|
|
ĠC x
|
|
ss on
|
|
}))\ }\]
|
|
}\! (
|
|
Ġ }}|\
|
|
var triangleleft
|
|
}{\ #\
|
|
}| }^{
|
|
^{* }})\]
|
|
Ġ{ +}\
|
|
Ġn m
|
|
Ġn et
|
|
Ġn eighbo
|
|
})( {\
|
|
{\| (
|
|
}:= |
|
|
18 7
|
|
34 7
|
|
}$ }.\
|
|
Ġ8 6
|
|
I L
|
|
x A
|
|
}^{- })=\
|
|
}\, (-
|
|
Ġd vol
|
|
ĠN R
|
|
)}^{ (\
|
|
))}\ |\
|
|
)* _{
|
|
G N
|
|
] ].\]
|
|
u j
|
|
le ct
|
|
Ġ\ !\!\
|
|
(\ !
|
|
}= [(
|
|
}}{ -\
|
|
{) },&\
|
|
Ġi deal
|
|
}\|\ \
|
|
,- }_{
|
|
}. (
|
|
Ġ* &
|
|
Pa th
|
|
[ (-
|
|
)\ }_{\
|
|
}^{\ {\
|
|
Ġ1 42
|
|
)) +(\
|
|
}}) ^{*}
|
|
ĠA s
|
|
Ġz ero
|
|
Ġ3 00
|
|
}:= |\
|
|
17 7
|
|
PS H
|
|
) })\,
|
|
) }|_{\
|
|
F W
|
|
F y
|
|
a nge
|
|
Ġd n
|
|
40 5
|
|
B X
|
|
_{\ {(
|
|
),\ {
|
|
Ġn s
|
|
Ġ_{ [
|
|
Ġs te
|
|
_{* }\,\
|
|
,- },\
|
|
56 8
|
|
}}^{+ }}\
|
|
Ġinter val
|
|
: _{
|
|
W AW
|
|
t T
|
|
}) }),\]
|
|
^{* }\)
|
|
}] },\]
|
|
}}) _{(
|
|
ĠN N
|
|
}_{+ };\
|
|
24 7
|
|
}):= -\
|
|
ĠDe finition
|
|
\ }}\,
|
|
x D
|
|
y v
|
|
}) }}{(
|
|
}_{ ,\
|
|
)=\ {(\
|
|
pre d
|
|
}+\| (\
|
|
34 4
|
|
)}| |
|
|
!|\! |
|
|
N b
|
|
{) }^{*}\
|
|
)) )^{\
|
|
box dot
|
|
,- }/\
|
|
20 4
|
|
\! {\
|
|
64 5
|
|
Ġ** -
|
|
499 9
|
|
) )}\,
|
|
E CH
|
|
t F
|
|
}= ||
|
|
}\, ;\]
|
|
))\ .\]
|
|
):= |
|
|
17 0
|
|
Ġse quence
|
|
}|\, .\]
|
|
! |\
|
|
) _{*}
|
|
4 35
|
|
< (\
|
|
L H
|
|
a A
|
|
}_{ :,
|
|
\|_{ *}\
|
|
)& =-
|
|
02 9
|
|
Ġdi sc
|
|
Ġequivalent ly
|
|
Ġrand om
|
|
: \]
|
|
w ard
|
|
}\ }|\]
|
|
ma t
|
|
})\ ,\,\
|
|
}}) ]
|
|
un lhd
|
|
^{+ })^{\
|
|
):= [
|
|
Pr op
|
|
ic ro
|
|
75 0
|
|
})< (
|
|
' s
|
|
a da
|
|
}] \,,\]
|
|
}\,\ }\]
|
|
})+\ |
|
|
}}| >
|
|
Ġpoly nomial
|
|
< \,
|
|
{\ }}-\
|
|
ri z
|
|
Ġc s
|
|
Ġc ent
|
|
}^{+ }}^{
|
|
})) >\
|
|
is tic
|
|
IJ K
|
|
Cy c
|
|
Ri em
|
|
^{* ,\
|
|
}}+\ |(
|
|
{] },\\
|
|
ĠQ u
|
|
)! }=\
|
|
,& |
|
|
B z
|
|
K E
|
|
] .
|
|
] )^{-
|
|
i C
|
|
n V
|
|
v dx
|
|
}) ))^{
|
|
pi tch
|
|
li d
|
|
or e
|
|
re m
|
|
{] }}{
|
|
for k
|
|
}))\ |^{
|
|
17 4
|
|
})& -\
|
|
h A
|
|
m dim
|
|
}) )}=
|
|
bo und
|
|
}\|_{ [
|
|
)^{- (\
|
|
sta t
|
|
)] }\]
|
|
up alpha
|
|
26 7
|
|
}_{\# }(
|
|
. )\
|
|
B Z
|
|
D O
|
|
p N
|
|
Ġ split
|
|
Ġ }}\,
|
|
}=\ {[
|
|
}}) )_{
|
|
}_{+ }-\
|
|
000 5
|
|
M E
|
|
N V
|
|
e th
|
|
n sity
|
|
| )\,\
|
|
Ġ }}\|
|
|
}) })^{\
|
|
}) }_{(
|
|
&\ ,
|
|
}] }\|
|
|
}^{- }}(
|
|
ge ne
|
|
ij m
|
|
ĠB S
|
|
}}, |
|
|
})| }
|
|
)> -\
|
|
30 8
|
|
03 8
|
|
60 8
|
|
Ġ{* }(\
|
|
0 32
|
|
\ }|+|\{
|
|
Ġ err
|
|
\[ *
|
|
pri or
|
|
er v
|
|
ho colim
|
|
{) }:\
|
|
}] \|_{\
|
|
ĠB orel
|
|
16 3
|
|
23 7
|
|
19 0
|
|
Ġtra ns
|
|
g z
|
|
}\ },&\
|
|
(\ #\
|
|
{) }{\
|
|
}}) :=
|
|
Ġk l
|
|
Ġ:=\ {(
|
|
sy n
|
|
pitch fork
|
|
K d
|
|
Ġ }}}{
|
|
ti m
|
|
}{\ #
|
|
20 5
|
|
)\! +\!
|
|
? \]
|
|
O pt
|
|
h c
|
|
Ġ cap
|
|
{\ }}^{\
|
|
}}} .\
|
|
21 8
|
|
)! )^{
|
|
{= }
|
|
34 8
|
|
})] )\]
|
|
)^{* }.\]
|
|
40 96
|
|
J H
|
|
J W
|
|
\ }/\
|
|
] }(-
|
|
s eq
|
|
}( :,
|
|
}) )}+\
|
|
}\| ,\|
|
|
Ġ= {\
|
|
Ġk n
|
|
ĠS ing
|
|
21 7
|
|
Ġno ise
|
|
Ġla w
|
|
aus sian
|
|
- })\
|
|
T ime
|
|
X B
|
|
f erence
|
|
r K
|
|
v p
|
|
| )=
|
|
}\ }.\
|
|
}) *(
|
|
}| ^{(
|
|
): [
|
|
17 9
|
|
D z
|
|
}^{* }}}\
|
|
}^{* }>
|
|
Ġt f
|
|
}\|_{ -
|
|
}^{+ },\\
|
|
ĠR S
|
|
)! }(
|
|
\[[\ ![\
|
|
( +
|
|
D r
|
|
I u
|
|
] &=\
|
|
b ib
|
|
y b
|
|
le ction
|
|
{) }[
|
|
Ġ{ {\
|
|
)) )+
|
|
}\, ;\,
|
|
Ġa ss
|
|
)}{ -\
|
|
_{+ })}\
|
|
^{+ })=\
|
|
})\, ,\\
|
|
18 6
|
|
Ġex act
|
|
Q f
|
|
b lock
|
|
}= [-
|
|
}: -
|
|
{] }}\
|
|
21 9
|
|
)}- (\
|
|
tiv ity
|
|
. )
|
|
] )=[
|
|
z a
|
|
Ġ tor
|
|
\[\ {|
|
|
^{* }\,\
|
|
ĠS C
|
|
ĠT est
|
|
}}{( (
|
|
0 37
|
|
L r
|
|
] _
|
|
k C
|
|
v d
|
|
x F
|
|
=\ !\!\
|
|
})= ((
|
|
+( |
|
|
Ġin i
|
|
is H
|
|
) }}|\
|
|
- -
|
|
A o
|
|
P N
|
|
i ve
|
|
z g
|
|
| )-
|
|
Ġi a
|
|
}/ |\
|
|
))\ }.\]
|
|
ĠM in
|
|
_{+ }}^{
|
|
33 8
|
|
is k
|
|
78 9
|
|
ĠCon v
|
|
TN D
|
|
H am
|
|
w eight
|
|
z h
|
|
al f
|
|
\[\ {{\
|
|
)) }}\
|
|
Ġi e
|
|
Ġf ull
|
|
)| )\]
|
|
^{*}\ }\]
|
|
})\, |
|
|
})\, (\
|
|
23 8
|
|
], &\
|
|
})] }{\
|
|
* }^{\
|
|
)( {\
|
|
equ ality
|
|
)\,\ |
|
|
Ġo b
|
|
Ġ+ &\
|
|
24 4
|
|
15 1
|
|
})|\ \
|
|
Ġ| (
|
|
Ġconst raint
|
|
Fit t
|
|
bib ref
|
|
) }}}
|
|
> _{\
|
|
B PS
|
|
\ },&
|
|
x P
|
|
}) },\\
|
|
{) }:
|
|
co eff
|
|
}\, ;\
|
|
Ġ} <
|
|
_{* },\]
|
|
})| ^{-
|
|
))}\ \
|
|
)}}{\ |
|
|
Ġsu ff
|
|
)_{+ }\]
|
|
Ġdis tribution
|
|
$ }}{\
|
|
& [
|
|
8 110
|
|
] }}(\
|
|
Ġ lower
|
|
^{* }}\|
|
|
\| (-\
|
|
Ġp la
|
|
_{+ }[
|
|
\}\ {
|
|
\}\ ,\]
|
|
gen ce
|
|
}}\!\!\ !\
|
|
2 96
|
|
i S
|
|
n B
|
|
}{ ((
|
|
}, *}\
|
|
})\ ;\;\
|
|
li cit
|
|
^{* })(\
|
|
\{ +
|
|
)}( (\
|
|
)| ,|\
|
|
Ġm ix
|
|
{\| }_
|
|
^{+ })=
|
|
en c
|
|
Ġtra ce
|
|
V M
|
|
ig gs
|
|
in s
|
|
|\ }\
|
|
_{* }[
|
|
}\|\ !
|
|
}})\ |^{
|
|
25 8
|
|
J A
|
|
L arge
|
|
s hift
|
|
y g
|
|
}) }({\
|
|
}} }}^{
|
|
}_{\ {(
|
|
ds d
|
|
nu mber
|
|
pa ir
|
|
ĠC m
|
|
ĠT N
|
|
_{+ },\]
|
|
\},\ {\
|
|
35 7
|
|
Ġle vel
|
|
Ġsim ple
|
|
p L
|
|
t R
|
|
ra te
|
|
ho ld
|
|
)}{ -
|
|
re ad
|
|
],\ ;
|
|
}]= (\
|
|
}}[\ |\
|
|
8110 24
|
|
e k
|
|
i I
|
|
al y
|
|
}}) [\
|
|
re qu
|
|
ĠS T
|
|
_{* }}^{\
|
|
dy n
|
|
Ġre du
|
|
4 48
|
|
H erm
|
|
d ing
|
|
h s
|
|
k D
|
|
m M
|
|
| .\
|
|
}) })_{
|
|
}^{* }{\
|
|
}^{* })\|_{
|
|
ĠL inear
|
|
}},\ {\
|
|
ĠN on
|
|
}}}\ }\]
|
|
]= \]
|
|
pe rm
|
|
})^{+ }\]
|
|
})\ }}\
|
|
at t
|
|
^{* -
|
|
}& |\
|
|
ĠM ul
|
|
}^{+ }}(\
|
|
mod ule
|
|
Ġvariable s
|
|
H a
|
|
N f
|
|
c A
|
|
Ġ })}^{
|
|
ra cy
|
|
^{- }}^{
|
|
}| )+\
|
|
{) }}{(
|
|
}] ]
|
|
{| },\
|
|
\[( [\
|
|
_{* }).\]
|
|
Ġ\[=\ {\
|
|
}}| -
|
|
G u
|
|
i E
|
|
\, +\
|
|
Ġ- |
|
|
... &\
|
|
\!\ !\!
|
|
99 6
|
|
diag up
|
|
}): \,
|
|
ĠSp in
|
|
H W
|
|
w d
|
|
}{ =
|
|
\, ;\]
|
|
14 1
|
|
Ġde c
|
|
R r
|
|
\ })-
|
|
] }).\]
|
|
p A
|
|
t M
|
|
}) )}=\
|
|
}_{\ {|\
|
|
ĠK e
|
|
20 6
|
|
)! },\]
|
|
Ġth an
|
|
Ġ }}^{(
|
|
pri v
|
|
}| ]\
|
|
}}) ,(\
|
|
{| }|\
|
|
,\, {\
|
|
40 8
|
|
sa tisf
|
|
Ġlo cal
|
|
N orm
|
|
le vel
|
|
ap e
|
|
chi tz
|
|
ĠS ub
|
|
_{* }}\]
|
|
12 12
|
|
))}\ |
|
|
;\;\ ;\
|
|
redu cible
|
|
A q
|
|
[ -(
|
|
m A
|
|
s ample
|
|
}) }}=\
|
|
\| }.\]
|
|
:=\ ;\
|
|
st e
|
|
}}^{* }=
|
|
})) :\
|
|
): \,\
|
|
}}^{+ ,
|
|
$, }\
|
|
Ġsupp ort
|
|
Ġedge s
|
|
] }\|_{
|
|
}) ...
|
|
}}\ }}\
|
|
re nt
|
|
_{+ +
|
|
})| }\]
|
|
)\| (
|
|
04 9
|
|
K v
|
|
L W
|
|
| }\|\
|
|
}\ };\]
|
|
}) !}\
|
|
}} }),\]
|
|
hi t
|
|
}^{- })=
|
|
}\, {}^{
|
|
}}) }^{\
|
|
}}) _{*}\
|
|
{] },
|
|
}^{*}\ }_{
|
|
)(\ |
|
|
20 7
|
|
27 2
|
|
)}}{ (\
|
|
}! (
|
|
)^{+ }\]
|
|
Ġresp ect
|
|
i R
|
|
m D
|
|
^{* }}}(
|
|
{) },&
|
|
}}) =-
|
|
), |\
|
|
ps chitz
|
|
Ġis o
|
|
}_{- })\
|
|
)}}{ {=
|
|
]}{ [
|
|
mis sible
|
|
A Q
|
|
N g
|
|
f ar
|
|
i sh
|
|
ĠO ut
|
|
\; =\;\
|
|
an nel
|
|
05 0
|
|
29 4
|
|
In c
|
|
_{\# }
|
|
Ġquad ratic
|
|
c ross
|
|
{ }_{(
|
|
Ġ })\,\
|
|
le c
|
|
ri es
|
|
}^{* }\|
|
|
}:= (-
|
|
23 9
|
|
|| |
|
|
In j
|
|
\}+\ {
|
|
ĠAv erage
|
|
D Y
|
|
J E
|
|
\ }}\,\
|
|
^{ <\
|
|
)\ |^{\
|
|
\| :=\
|
|
}^{* }},\
|
|
Ġc over
|
|
Ġe m
|
|
{)}= \]
|
|
}^{\# }(
|
|
})&= &\
|
|
Ġreg ular
|
|
T K
|
|
X f
|
|
] })_{
|
|
s X
|
|
u lation
|
|
y a
|
|
| &
|
|
par se
|
|
Ġra di
|
|
+ {
|
|
, (-\
|
|
C z
|
|
F lag
|
|
}^{ <\
|
|
}) )}\\
|
|
}| |\]
|
|
}] +(
|
|
}}) },\
|
|
Ġ)\ |^{
|
|
99 7
|
|
K os
|
|
N H
|
|
V D
|
|
f k
|
|
s pa
|
|
Ġ )}-\
|
|
}} }=(
|
|
}| }\,\
|
|
}| (|
|
|
)) ;\
|
|
ĠG al
|
|
Ġal gebra
|
|
21 4
|
|
):= |\
|
|
25 9
|
|
che me
|
|
\; ,\\
|
|
]{ [\
|
|
eri or
|
|
asi s
|
|
{}{ {}^{\
|
|
rid ge
|
|
3 13
|
|
I X
|
|
Ġ }_{(
|
|
^{- }}^{\
|
|
}^{* }]
|
|
Ġ2 50
|
|
)) )+\
|
|
_{* }:=\
|
|
ĠN S
|
|
)\, +\,
|
|
Ġ&&& &\
|
|
]{[\ @@
|
|
> |
|
|
M h
|
|
T g
|
|
| )}{|
|
|
Ġ }+\|
|
|
}\ }/
|
|
(\ (\
|
|
}}\ }=\
|
|
lo ss
|
|
}, :
|
|
^{* })\|^{
|
|
}^{- },\]
|
|
)) )_{
|
|
Ġi y
|
|
Ġn b
|
|
_{* })+
|
|
Ġ\[= \]
|
|
Ġ- $
|
|
ĠP re
|
|
};\ {\
|
|
})| }{|\
|
|
)\| +\|
|
|
03 9
|
|
}) )\,,\]
|
|
^{* (
|
|
})= &\
|
|
};\ {
|
|
|\, ,\]
|
|
Ġno des
|
|
g b
|
|
}) !\
|
|
si c
|
|
co k
|
|
}\|_{ {\
|
|
_{- }.\]
|
|
)|^{ -\
|
|
vol u
|
|
})^{* }.\]
|
|
val u
|
|
&* &\
|
|
$ }}\,
|
|
) }]^{\
|
|
< _{\
|
|
P Z
|
|
}| )}\
|
|
ĠI rr
|
|
Ġr k
|
|
}; -\
|
|
per t
|
|
}_{+ }+\
|
|
})| ,\
|
|
\[[ {\
|
|
\! =\!\
|
|
Ex c
|
|
$ )}\]
|
|
0 56
|
|
J Z
|
|
K r
|
|
T a
|
|
h ull
|
|
o racle
|
|
Ġ arc
|
|
}} }((
|
|
)\ }+
|
|
}] {
|
|
}^{( {\
|
|
Ġn ear
|
|
)} .
|
|
]\ ;\
|
|
})( (\
|
|
Ġ* }(\
|
|
)\! -\!\
|
|
! )^{\
|
|
7 32
|
|
q w
|
|
v q
|
|
(\ {(
|
|
}| |(
|
|
)) ),\
|
|
Ġf in
|
|
}\| -
|
|
}}+ ||
|
|
^{+ }\|_{
|
|
)}= [\
|
|
01 00
|
|
04 4
|
|
ev al
|
|
T an
|
|
^{\ {\
|
|
par t
|
|
Ġf e
|
|
}\|_{ *}^{
|
|
)_{ (\
|
|
^{+ }}{\
|
|
^{*} |_{
|
|
|}{ **
|
|
there fore
|
|
) _{*
|
|
o o
|
|
x n
|
|
}) }},\
|
|
ti ce
|
|
lin k
|
|
}^{* }),
|
|
}^{* }(-
|
|
\, ^{
|
|
}}) )^{\
|
|
}|\ )
|
|
}|\ |\
|
|
Ġ\( {\
|
|
_{* }\|^{
|
|
Ġ}( (
|
|
|+\ |
|
|
}{*}{ **
|
|
thick sim
|
|
M z
|
|
g c
|
|
h z
|
|
}\ }>
|
|
)\ !\!\
|
|
Ġi id
|
|
}[\ ,
|
|
ĠD E
|
|
\) **
|
|
})| -\
|
|
Ġ+ }\
|
|
Ġ5 12
|
|
Ġdef inition
|
|
las ses
|
|
Ġhy per
|
|
Ġinfinite ly
|
|
D y
|
|
c I
|
|
t emp
|
|
,\ !\
|
|
}^{( *
|
|
ĠB i
|
|
_{* }}}\
|
|
})}\ .\]
|
|
Ġg ood
|
|
pt I
|
|
}{( |
|
|
}}{| |\
|
|
Ġre lative
|
|
\[\# \{\
|
|
fi ed
|
|
D b
|
|
M d
|
|
a Y
|
|
}^{ {(
|
|
}) }=-\
|
|
dy dt
|
|
Re m
|
|
)}_{ =
|
|
Ġ}^{ -\
|
|
...& ...&
|
|
O B
|
|
v ac
|
|
(\ |(
|
|
)\ })\
|
|
)= {}_{
|
|
ĠF M
|
|
:= -
|
|
conv ex
|
|
/ _{
|
|
G ra
|
|
c K
|
|
m H
|
|
p C
|
|
ri cal
|
|
su rd
|
|
}^{- }\|_{
|
|
Ġt yp
|
|
}|\ ,|
|
|
dx dz
|
|
{[ }{\
|
|
)\| +\|\
|
|
{< }
|
|
) }|}\
|
|
; }\]
|
|
] }^{-
|
|
h S
|
|
i Q
|
|
}: [\
|
|
Ġi c
|
|
ĠF ig
|
|
}}| }{
|
|
for mation
|
|
)\| +
|
|
19 3
|
|
}}] \\
|
|
po ch
|
|
Ġdi stance
|
|
Ġset s
|
|
! }\,
|
|
) }](
|
|
c D
|
|
}^{ !}\
|
|
in k
|
|
ta il
|
|
}} })(
|
|
}] }{(
|
|
Ġin j
|
|
})\, .\
|
|
)})\ ,\
|
|
27 5
|
|
35 4
|
|
26 378
|
|
A K
|
|
F rac
|
|
G V
|
|
J x
|
|
q l
|
|
}} }]\]
|
|
Ġ}\ }\
|
|
}}}\ {
|
|
}^{+ }}|
|
|
\[|\ {\
|
|
})^{- }\
|
|
22 7
|
|
& =-\
|
|
B t
|
|
Ġ sq
|
|
er n
|
|
}^{* }]\
|
|
)) [\
|
|
)) ]^{
|
|
}}) >\
|
|
Ġa x
|
|
)| /
|
|
}^{+ }}|\
|
|
liz ed
|
|
& (-
|
|
) })}(
|
|
C m
|
|
F H
|
|
] ,(
|
|
b A
|
|
t G
|
|
}) {
|
|
_{\ {|\
|
|
}, ...\
|
|
}| [
|
|
^{* *}\
|
|
{| }{\
|
|
_{+ }}\]
|
|
{- -}\
|
|
22 9
|
|
): \|
|
|
)}& =
|
|
0 36
|
|
F ib
|
|
S GD
|
|
W L
|
|
\ }/
|
|
\ '{
|
|
] })^{
|
|
r H
|
|
u D
|
|
Ġ },\\
|
|
^{- }}{
|
|
{| (\
|
|
}),\ |\
|
|
)\, +\,\
|
|
)}| =
|
|
)}\, |
|
|
)\; ,\
|
|
Ġei ther
|
|
! =\!\
|
|
] $
|
|
i tions
|
|
o de
|
|
Ġ }}}{\
|
|
Ġ ;\]
|
|
}) })(
|
|
}+ }\
|
|
}}{ [\
|
|
}| :
|
|
}| }|
|
|
)| -|\
|
|
ĠM C
|
|
}}- {\
|
|
)& =(
|
|
32 9
|
|
000 2
|
|
100 1
|
|
x H
|
|
}_{ **
|
|
{\ }},
|
|
na d
|
|
ve nt
|
|
45 0
|
|
28 9
|
|
05 5
|
|
ni tial
|
|
98 9
|
|
+ }}\
|
|
z G
|
|
Ġ /(
|
|
}^{ >\
|
|
Ġ1 50
|
|
}^{* }))\]
|
|
{(}\ |(\
|
|
)}{ }^{
|
|
di sk
|
|
Ġs m
|
|
}^{+ }[
|
|
if ied
|
|
,- }
|
|
45 7
|
|
28 6
|
|
37 6
|
|
]; \\
|
|
Ġprod uct
|
|
C Q
|
|
C v
|
|
})\ |+
|
|
}] }|\
|
|
), [\
|
|
Ġe nt
|
|
17 3
|
|
})] }{
|
|
cur v
|
|
H B
|
|
H V
|
|
L w
|
|
] }[\
|
|
t st
|
|
Ġ }}\|\
|
|
}\ }},\]
|
|
}) ],
|
|
)\ }=\{
|
|
se ction
|
|
}-\ {\
|
|
Ġ1 10
|
|
)}{ =}
|
|
ss ing
|
|
ĠF ro
|
|
\}\ },\]
|
|
20 2
|
|
Ġ\, |
|
|
}_{< }(
|
|
Ġdo main
|
|
Ġsym metric
|
|
. }}(\
|
|
R MSE
|
|
W g
|
|
}\ }}^{
|
|
}| _
|
|
\| >\
|
|
}^{* })}{\
|
|
Ġ2 000
|
|
Ġa cc
|
|
re ction
|
|
}^{+ }).\]
|
|
)! ^{
|
|
35 0
|
|
Pa rameter
|
|
Ġfac tor
|
|
H A
|
|
\ }$
|
|
g w
|
|
| )-\
|
|
}\ }}|\
|
|
}{ }{\
|
|
|\ )
|
|
}^{* *}\
|
|
or s
|
|
ij l
|
|
Ġ\( +\
|
|
))\ ;\
|
|
Ġp erm
|
|
})_{ (\
|
|
:\ :
|
|
24 9
|
|
32 5
|
|
xy x
|
|
}\{\ |\
|
|
}|| |_{
|
|
98 8
|
|
Ġparameter s
|
|
< [
|
|
A h
|
|
D eg
|
|
H G
|
|
J L
|
|
e ig
|
|
u tation
|
|
ad ic
|
|
^{- }+\
|
|
}\| )^{
|
|
{)}\ )
|
|
})+ [
|
|
Ġin equality
|
|
24 1
|
|
\; =\;
|
|
pr in
|
|
}! }{
|
|
Ġse nse
|
|
requ ency
|
|
D own
|
|
e b
|
|
| )}{\
|
|
Ġ using
|
|
Ġ= ((
|
|
di mension
|
|
}})\ }_{
|
|
)] |\
|
|
tt t
|
|
)& :=
|
|
Ġof f
|
|
[- ,-
|
|
26 9
|
|
04 7
|
|
)^{+ }}\
|
|
})}}{ {=}}
|
|
! _{
|
|
- },\
|
|
}} }},\
|
|
}, _{
|
|
}_{\ |\
|
|
}= {}^{
|
|
Ġ1 23
|
|
{) }>\
|
|
ĠB K
|
|
}^{+ }:
|
|
ĠD R
|
|
})( [
|
|
Ġ- {\
|
|
... ,(
|
|
17 1
|
|
icient ly
|
|
/ \|\
|
|
S yn
|
|
V e
|
|
c ro
|
|
Ġ\ ,\,
|
|
li s
|
|
^{* }}\,
|
|
}] _{(
|
|
})= &
|
|
Ġd P
|
|
}}, [\
|
|
Ġ| |_{
|
|
18 2
|
|
}}^{+ }=\
|
|
subsetneq q
|
|
!\!\!\!\ !\!\!\!\
|
|
sph eri
|
|
( +\
|
|
* },\
|
|
@ >
|
|
B n
|
|
E g
|
|
N G
|
|
U x
|
|
k w
|
|
s mooth
|
|
u sion
|
|
}- }\
|
|
})^{ +}
|
|
Ġc ell
|
|
ĠN L
|
|
}* }
|
|
99 43
|
|
17 2
|
|
28 5
|
|
}}&\ \
|
|
tra n
|
|
Ġse mi
|
|
bi lity
|
|
0 64
|
|
S Y
|
|
V W
|
|
W r
|
|
}| )(
|
|
ĠL R
|
|
}}+ [\
|
|
]^{ <\
|
|
ord in
|
|
)\! +\!\
|
|
po si
|
|
G U
|
|
S um
|
|
}) )=-
|
|
}}\ {(
|
|
}, ..
|
|
)=\ #\
|
|
}^{* }}=
|
|
Ġa a
|
|
{)}\ ;.\]
|
|
ĠM ap
|
|
ĠP er
|
|
sta rt
|
|
+| |\
|
|
sc l
|
|
up per
|
|
37 7
|
|
},& (
|
|
be st
|
|
010 1
|
|
Ġcy cle
|
|
! -\!\
|
|
K p
|
|
Z ar
|
|
{ '
|
|
Ġ })}\]
|
|
}_{ /\
|
|
ver s
|
|
}& [
|
|
ĠA T
|
|
ĠI t
|
|
ĠR o
|
|
})\, |\
|
|
Ġ}{ |\
|
|
2 99
|
|
H or
|
|
L g
|
|
a I
|
|
g on
|
|
s P
|
|
}( ^{
|
|
^{* }\,
|
|
}] }+\
|
|
Ġc ri
|
|
_{- }}{\
|
|
)| ,
|
|
}^{+ }|\
|
|
26 5
|
|
Ġ{- }\
|
|
!\! \{
|
|
499 886
|
|
Ġav g
|
|
ta tions
|
|
{) }-(
|
|
}] ^{(
|
|
}}_{ =:
|
|
ĠN a
|
|
ĠF ix
|
|
)] /
|
|
29 8
|
|
\[\# (\
|
|
Ġini tial
|
|
U A
|
|
f tarrow
|
|
s on
|
|
Ġ\ },\
|
|
{\ #\{
|
|
}} }}=\
|
|
})\ ),
|
|
^{* }>
|
|
Ġi p
|
|
\, ;\,
|
|
_{+ }}(\
|
|
Ġw eak
|
|
27 7
|
|
* [
|
|
H ull
|
|
x R
|
|
Ġ1 11
|
|
}\, -
|
|
it x
|
|
Ġv i
|
|
{- (\
|
|
}_{+ }-
|
|
76 5
|
|
Ġmaxi mal
|
|
B w
|
|
a B
|
|
b circ
|
|
f X
|
|
}) }/
|
|
)\ }\\
|
|
)= |\{
|
|
),\ ;\;
|
|
_{+ }\\
|
|
}< |\
|
|
20 3
|
|
20 10
|
|
18 1
|
|
{|}_{ (\
|
|
]\! ],
|
|
MM SE
|
|
) }}^{-
|
|
> ^{
|
|
V C
|
|
k F
|
|
Ġ }:
|
|
Ġ )}+
|
|
}\ }<\
|
|
}( +
|
|
}} }},\]
|
|
=\ {\{
|
|
}=\ ,\
|
|
}}\, :\,
|
|
V f
|
|
g K
|
|
p M
|
|
{\ }}_{\
|
|
}} };\
|
|
}} }/\
|
|
}{ +}\
|
|
|\ {\
|
|
co de
|
|
ĠA D
|
|
}}, {
|
|
ĠG ap
|
|
27 0
|
|
}]\! ]
|
|
^{! }_{
|
|
I E
|
|
N il
|
|
q A
|
|
| })\]
|
|
Ġ us
|
|
Ġ\ @@
|
|
)\ }+\
|
|
pha se
|
|
})\ {\
|
|
^{* }}^{(
|
|
}}) +(\
|
|
un it
|
|
ĠH H
|
|
\[|\ ,\
|
|
|| =
|
|
Gr p
|
|
39 5
|
|
) }:=(
|
|
P v
|
|
Q X
|
|
S ign
|
|
f alse
|
|
}\ }}=\
|
|
lo t
|
|
}] \}\
|
|
Ġ} .\
|
|
Ġd h
|
|
Ġg h
|
|
}}\, |\,\
|
|
Ġ+ }(
|
|
([ -\
|
|
Ġinc reasing
|
|
$ }\}\]
|
|
. },\
|
|
P y
|
|
R g
|
|
h M
|
|
Ġ )})\
|
|
}) }|^{
|
|
}} }}^{\
|
|
}= +
|
|
Ġ& &-
|
|
}| )=
|
|
{) }[\
|
|
}^{* }}+\
|
|
ij t
|
|
ĠA e
|
|
Ġs trict
|
|
ĠP S
|
|
}}_{\ {
|
|
deg ree
|
|
mp e
|
|
48 8
|
|
ne ar
|
|
ĠRe p
|
|
Ġse cond
|
|
Ġ{+ }(
|
|
! }+
|
|
5 04
|
|
H U
|
|
L s
|
|
M AX
|
|
| )}\]
|
|
big uplus
|
|
li ke
|
|
^{* })}\]
|
|
)) )}\
|
|
ĠS u
|
|
)\| =\|
|
|
Ġ[ (
|
|
,-\ ,
|
|
B I
|
|
J J
|
|
\ }}\|
|
|
y q
|
|
Ġ )},\]
|
|
}) !(
|
|
in ary
|
|
^{* }},\]
|
|
}] _{+
|
|
}] /(\
|
|
}\| (-\
|
|
ĠA n
|
|
_{( {\
|
|
}^{+ })-
|
|
)\, ,\,\
|
|
ĠP T
|
|
^{+ }}\]
|
|
}=(\ {
|
|
dv dx
|
|
37 49
|
|
38 5
|
|
Per v
|
|
GK dim
|
|
Ġrepre sen
|
|
z s
|
|
}| }}{
|
|
}^{+ }:\
|
|
Ġ^{ [
|
|
};\ ;
|
|
19 1
|
|
}}^{+ })\
|
|
SL E
|
|
* }=\
|
|
4 37
|
|
E r
|
|
R v
|
|
V S
|
|
a D
|
|
u la
|
|
y xy
|
|
Ġ )}=\
|
|
Ġ cut
|
|
}} }/
|
|
}}\ }=
|
|
var Theta
|
|
ĠC P
|
|
), +
|
|
Ġd Y
|
|
}}^{\ {
|
|
\[\{ [\
|
|
Co b
|
|
ĠMul ti
|
|
K A
|
|
] )}{\
|
|
b lk
|
|
c X
|
|
Ġ ln
|
|
_{ /
|
|
}\ }\,\
|
|
}) )),\]
|
|
}] ,\,
|
|
}^{- }:=\
|
|
)) ].\]
|
|
Ġa bo
|
|
Ġd k
|
|
.\ ,\
|
|
12 23
|
|
ĠF P
|
|
_{+ }|
|
|
dv du
|
|
Ġde nsity
|
|
\[{ }^{(
|
|
Ġmulti pli
|
|
Ġsuff iciently
|
|
& -(
|
|
- {
|
|
0 31
|
|
C c
|
|
] }&\
|
|
c lass
|
|
j T
|
|
Ġ }}\]
|
|
Ġi ter
|
|
\, [\
|
|
}\| |\
|
|
_{* }|
|
|
less dot
|
|
Co nd
|
|
lat ed
|
|
ull i
|
|
})\! =\!\
|
|
âĢ Ŀ
|
|
ĠDi ag
|
|
\ })-\
|
|
b ut
|
|
f rom
|
|
o id
|
|
lo m
|
|
)^{ (-
|
|
}| }}{\
|
|
}] :=
|
|
ĠC D
|
|
}}) }_{\
|
|
{| }<
|
|
)} *\
|
|
ĠL S
|
|
ĠS P
|
|
(- |
|
|
ĠD is
|
|
ĠP I
|
|
^{+ }\\
|
|
}))\ |\
|
|
}_{- }\]
|
|
}): \|
|
|
}}] -
|
|
74 9943
|
|
ule r
|
|
A a
|
|
K dV
|
|
M AP
|
|
S g
|
|
U LA
|
|
\ })}
|
|
a K
|
|
h C
|
|
p H
|
|
| -(
|
|
}\ }|
|
|
}( ]
|
|
Ġf ace
|
|
\, ,&\
|
|
}\) .
|
|
and om
|
|
32 7
|
|
ert y
|
|
}\; :\;\
|
|
)< -\
|
|
05 8
|
|
38 8
|
|
{, }\
|
|
)]= [\
|
|
Bi as
|
|
Ġfi eld
|
|
! .\]
|
|
& |\
|
|
}) )=-\
|
|
)\ },
|
|
|^{ |
|
|
}}_{ +}\
|
|
Ġk m
|
|
ĠS I
|
|
20 9
|
|
], |
|
|
)}}{ {
|
|
]+ (-
|
|
}}(- ,
|
|
29 5
|
|
Ġra tio
|
|
We yl
|
|
$ })\]
|
|
e h
|
|
f irst
|
|
s core
|
|
w h
|
|
}{ }^{*}
|
|
)\ !\!
|
|
bo unded
|
|
ds dx
|
|
}] })\
|
|
)) }-\
|
|
ĠS ection
|
|
Ġe stima
|
|
}^{+ }\}\]
|
|
Ġh ence
|
|
,- ,
|
|
14 40
|
|
})) }+
|
|
): \]
|
|
27 8
|
|
)}) ]\
|
|
|> |
|
|
Ġuni que
|
|
Ġcy c
|
|
Mul t
|
|
; =\;\
|
|
< \|
|
|
B matrix
|
|
Q N
|
|
V B
|
|
c B
|
|
m ld
|
|
}) }}(\
|
|
}) }+(
|
|
}} }^{(\
|
|
(\ !\!\
|
|
\,\ |_{
|
|
&- &-
|
|
TM F
|
|
Ġse p
|
|
)$ },\\
|
|
})\; =\;\
|
|
\[\# (
|
|
cur rent
|
|
do f
|
|
verti ble
|
|
) }}}\]
|
|
- }}\
|
|
6 75
|
|
\ &\
|
|
z v
|
|
Ġ })\]
|
|
Ġ )]
|
|
}} })}\
|
|
^{- }.\]
|
|
ĠC or
|
|
Ġin put
|
|
},\, |\
|
|
36 9
|
|
ess sup
|
|
Ġval ues
|
|
) }}\|\
|
|
H X
|
|
L V
|
|
b el
|
|
{ }>
|
|
Ġ Pic
|
|
_{ >\
|
|
le r
|
|
}}\ #
|
|
se nt
|
|
)}\ ;.\]
|
|
}^{* *}(
|
|
Ġ\(\ {\
|
|
}}|\ ,
|
|
}}^{- }\]
|
|
dr ds
|
|
33 7
|
|
30 5
|
|
26 0
|
|
Ġun it
|
|
tm f
|
|
) }].\]
|
|
) }}}{{=}}\
|
|
B d
|
|
N y
|
|
] /(\
|
|
h X
|
|
ro ll
|
|
{) }=(\
|
|
ĠC p
|
|
ĠC ar
|
|
ci sion
|
|
}\| }{\|\
|
|
Ġ=\ ,
|
|
Ġ- |\
|
|
\[| [
|
|
ol ute
|
|
|\, |\
|
|
res hold
|
|
so rt
|
|
so lid
|
|
iz ed
|
|
),\,\ ,\,
|
|
ment s
|
|
Ġsing ular
|
|
. &\
|
|
p la
|
|
Ġ\ {(\
|
|
\[\ {-
|
|
_{\ ,\
|
|
{| }_
|
|
_{* })-\
|
|
))\ }\
|
|
Ġy x
|
|
ĠK K
|
|
Ġ)\ |_{\
|
|
)}) &\
|
|
Ad d
|
|
|\! |\
|
|
\# \{
|
|
rcl rcl
|
|
\|=\ |\
|
|
: .\]
|
|
H O
|
|
T Z
|
|
n A
|
|
Ġ )}-
|
|
}) }}+\
|
|
^{- }}(\
|
|
\, -\
|
|
Ġ- ,
|
|
ĠU p
|
|
}=- {\
|
|
}\! :\!
|
|
cd h
|
|
no ulli
|
|
98 4
|
|
08 8
|
|
46 5
|
|
> +\
|
|
L an
|
|
k R
|
|
x B
|
|
}} }^
|
|
)= {
|
|
}] })\]
|
|
Ġs n
|
|
}^{+ })-\
|
|
Ġ}( -\
|
|
98 5
|
|
}|> |
|
|
$}} }}{\
|
|
lv l
|
|
$ },
|
|
6 78
|
|
= _{
|
|
H f
|
|
v b
|
|
v k
|
|
Ġ limit
|
|
}\ }|=
|
|
}, {}^{
|
|
}= &-\
|
|
pi c
|
|
}| )=\
|
|
ro und
|
|
}^{- }\\
|
|
\|_{ -\
|
|
}^{* }}.\]
|
|
)- \]
|
|
ĠN C
|
|
34 9
|
|
}]=\ {
|
|
Ġlo op
|
|
Me an
|
|
M GL
|
|
X U
|
|
\ }),
|
|
o sed
|
|
s B
|
|
Ġ mu
|
|
su rf
|
|
)) }}{
|
|
_{* }/
|
|
}^{+ }/\
|
|
Ġb asis
|
|
up omega
|
|
\% \
|
|
}}/ (\
|
|
Ġdiff er
|
|
0 78
|
|
J T
|
|
S v
|
|
W H
|
|
b D
|
|
Ġ rt
|
|
}) })-\
|
|
Ġ\ }\]
|
|
ft er
|
|
}] )+
|
|
Ġx z
|
|
}\,\ |_{
|
|
Ġ( |\
|
|
_{+ }^{*}}\
|
|
\[\|\ ,\
|
|
})| |_{\
|
|
))^{ *}\
|
|
99 2
|
|
33 5
|
|
05 9
|
|
res sion
|
|
]- [\
|
|
nn z
|
|
St k
|
|
glo b
|
|
b B
|
|
b ic
|
|
g roup
|
|
x mapsto
|
|
z d
|
|
Ġ na
|
|
}) }>\
|
|
}) ;(
|
|
ar o
|
|
^{* }<
|
|
^{* })}(
|
|
}] }_{
|
|
\| },\
|
|
)) }-
|
|
Ġ} |_{
|
|
}}) }+
|
|
{| {\
|
|
}\| >\
|
|
Ġn or
|
|
(- ,
|
|
/\ !
|
|
{\| }\,\
|
|
\[| |(
|
|
}_{+ +
|
|
]}\ {
|
|
}}^{* })^{
|
|
35 2
|
|
04 1
|
|
F Y
|
|
G X
|
|
m P
|
|
| )^{(
|
|
Ġ\ }}
|
|
(\ !(
|
|
})\ |=
|
|
}] }\|\
|
|
\{ +\
|
|
\, ^{\
|
|
}/ [
|
|
_{* }}\|\
|
|
}}}\ )
|
|
ĠM axi
|
|
Ġm m
|
|
Ġ- }\
|
|
)\,\ ,\,\
|
|
_{| |
|
|
05 7
|
|
Ġ{* }\]
|
|
66 7
|
|
Ġmo st
|
|
Mo del
|
|
> =\
|
|
E f
|
|
L at
|
|
M m
|
|
Q F
|
|
T s
|
|
\ }}_{\
|
|
] )}{
|
|
s Set
|
|
}\ }),\]
|
|
si ve
|
|
ri er
|
|
^{* })\\
|
|
}] }}\
|
|
)) {\
|
|
Ġt e
|
|
Ġ_{ -\
|
|
ĠS D
|
|
_{* }|^{\
|
|
Ġr ig
|
|
\}\ ;.\]
|
|
}}\, .\
|
|
ay er
|
|
\ })+
|
|
] |_{
|
|
r L
|
|
le xi
|
|
at er
|
|
\| )
|
|
Ġf low
|
|
Ġc lo
|
|
^{+ }|
|
|
}_{+ },\\
|
|
20 22
|
|
}_{* }\|_{
|
|
64 9
|
|
,* }\]
|
|
Ġco lumn
|
|
SV D
|
|
D n
|
|
Q e
|
|
a E
|
|
_{ |_{\
|
|
}) ]}
|
|
}_{ +\
|
|
}} }+\|\
|
|
bm o
|
|
)) )(
|
|
Ġi jk
|
|
re te
|
|
ĠB x
|
|
)\, ,\,
|
|
)] [
|
|
Ġin du
|
|
}}\| _
|
|
arrow left
|
|
28 4
|
|
35 5
|
|
Ġtra in
|
|
T HR
|
|
\ })^{\
|
|
a L
|
|
a S
|
|
s low
|
|
}( ||
|
|
\[ >
|
|
_{\ !\!
|
|
)\ )}
|
|
lo bal
|
|
eq sim
|
|
ĠS R
|
|
ĠX Y
|
|
ĠR an
|
|
ĠP ar
|
|
24 2
|
|
27 9
|
|
,+ }^{\
|
|
Mod ule
|
|
79 2
|
|
39 7
|
|
Ġcon e
|
|
ĠRe LU
|
|
$ }(\
|
|
& {\
|
|
C art
|
|
] ]=\
|
|
p ot
|
|
Ġ }\,.\]
|
|
^{* _{
|
|
Ġ\[\ {\
|
|
Ġa ff
|
|
Ġco v
|
|
\!\!\!\ !\
|
|
U M
|
|
\ }}(-
|
|
d log
|
|
e A
|
|
g i
|
|
p K
|
|
Ġ *\
|
|
over leftrightarrow
|
|
Ġi ts
|
|
\|\ !
|
|
}& &&&\\
|
|
})_{ !}(
|
|
28 7
|
|
46 7
|
|
|}{\ (\
|
|
Ġdiag onal
|
|
Ġen ergy
|
|
ĠLo g
|
|
Ġcomponent s
|
|
- }+
|
|
/ \,
|
|
L ag
|
|
Z X
|
|
[ \]
|
|
\ }^{(
|
|
\ }))\]
|
|
o log
|
|
u H
|
|
Ġ }:\
|
|
}( .,
|
|
at u
|
|
}=\ |(
|
|
Ġ_{ (\
|
|
{[ }\,
|
|
\[(\ {\
|
|
Ġo bj
|
|
{(}( -\
|
|
amil y
|
|
) ...
|
|
* },
|
|
c st
|
|
| }_{
|
|
Ġ }}^{-
|
|
^{- }}\]
|
|
Ġ\[ (-
|
|
^{* }))
|
|
chi ld
|
|
)-\ {
|
|
ĠS upp
|
|
)| }{\|
|
|
Ġin it
|
|
Ġ}( {\
|
|
\!\ !\!/
|
|
18 3
|
|
34 56
|
|
}$ },\
|
|
30 6
|
|
}}[\ |
|
|
fi cation
|
|
E N
|
|
,\ #
|
|
}} }^{*}\
|
|
rho od
|
|
}^{* }}-
|
|
}\, )\
|
|
Ġd F
|
|
\[( |\
|
|
Ġy z
|
|
}_{+ +}^{
|
|
{{ ?
|
|
}}^{* }_{
|
|
no ugh
|
|
/ \,\
|
|
H k
|
|
M w
|
|
] }:
|
|
o h
|
|
q h
|
|
| }}\]
|
|
| :\
|
|
}^{ {}_{
|
|
}| )|
|
|
}}( {
|
|
Ġ1 60
|
|
}^{* }}-\
|
|
ĠB R
|
|
^{-\ |
|
|
Ġe nough
|
|
ĠH e
|
|
ĠD M
|
|
)& (\
|
|
25 4
|
|
})] )\
|
|
)\|\ |
|
|
26 6
|
|
98 6
|
|
);\ ,
|
|
Ġker nel
|
|
L p
|
|
n F
|
|
}) }((
|
|
}+\ {\
|
|
}^{* }=\{
|
|
}}_{ *}(
|
|
Pi v
|
|
ĠF e
|
|
11 52
|
|
}_{+ })
|
|
{|\ {
|
|
Ġ}{ (\
|
|
ju ga
|
|
3749 03
|
|
9 75
|
|
G p
|
|
L Q
|
|
N eu
|
|
R ow
|
|
S ec
|
|
l w
|
|
Ġ })\|_{
|
|
}\| }.\]
|
|
bigg m
|
|
ĠB B
|
|
ĠS hv
|
|
34 3
|
|
Ġ\, |\
|
|
})\| ^
|
|
46 8
|
|
Ġir reducible
|
|
O rd
|
|
s D
|
|
s amp
|
|
v ia
|
|
}} }}{{=}}\
|
|
am ic
|
|
tor d
|
|
}^{* };
|
|
_{- }}\]
|
|
}^{+ }),\
|
|
ĠG M
|
|
Ġ$ [
|
|
ch y
|
|
)}=\ {(
|
|
Ġ5 000
|
|
}}[ |\
|
|
)}) _{(
|
|
)[ [
|
|
04 6
|
|
mi tive
|
|
fix ed
|
|
) }}&\
|
|
5 88
|
|
H iggs
|
|
T n
|
|
a M
|
|
Ġ }-(
|
|
}) }]\
|
|
}(\ {(
|
|
}| }}
|
|
))\ }_{
|
|
}}}\ !\
|
|
ĠD G
|
|
}}| }
|
|
}}| +|\
|
|
}> |
|
|
):= (-
|
|
}* _{\
|
|
)\| ,\]
|
|
)\| =\|\
|
|
\{( -
|
|
29 7
|
|
)_{+ }^{\
|
|
iz x
|
|
)$ }\\
|
|
Ġcom mu
|
|
6 56
|
|
U niform
|
|
e B
|
|
Ġ\ !\!
|
|
}{ }_{(
|
|
bol ic
|
|
^{- })=
|
|
Ġt A
|
|
ĠS ize
|
|
Ġ\( {}^{
|
|
Ġv s
|
|
_{- })=
|
|
Ġm k
|
|
Ġal ong
|
|
\[= :
|
|
33 33
|
|
(\| (\
|
|
|+\ |\
|
|
\# }\
|
|
: }
|
|
B ad
|
|
M X
|
|
O A
|
|
V T
|
|
}} ;\\
|
|
+\ ;
|
|
^{- })^{\
|
|
}}) ;\
|
|
}|\ |_{
|
|
]\ |^{
|
|
ĠT R
|
|
Ġ\( [-
|
|
ĠF or
|
|
33 9
|
|
}}& &\\
|
|
39 2
|
|
}}\! =\!\
|
|
black triangleleft
|
|
ens or
|
|
ĠDe scription
|
|
ĠLe b
|
|
D p
|
|
] }=(
|
|
a H
|
|
s C
|
|
| :=\
|
|
Ġ cos
|
|
Ġ ^{*}(\
|
|
}\ }(\
|
|
}\ }]\
|
|
}) )=\{
|
|
}} },\\
|
|
de m
|
|
}{ -}\
|
|
}^{* }<
|
|
)- [\
|
|
\, )\]
|
|
}}\, ,\\
|
|
Ġ6 00
|
|
30 9
|
|
},- ,
|
|
Ġan ti
|
|
pq r
|
|
)$ -
|
|
MF C
|
|
}|\! |_{
|
|
Ġup per
|
|
ris tic
|
|
lom orphic
|
|
# \,
|
|
+ )\
|
|
8 96
|
|
> =
|
|
I Z
|
|
J f
|
|
K C
|
|
O U
|
|
Z C
|
|
ti ble
|
|
^{\ |
|
|
{( |\
|
|
)=\ #\{
|
|
ĠC ond
|
|
)) )^{-
|
|
)| }=\
|
|
ĠR T
|
|
_{+ })=\
|
|
}\) **
|
|
+| (
|
|
}}^{* }-
|
|
})] /
|
|
},- )\
|
|
blk diag
|
|
A cc
|
|
G l
|
|
V er
|
|
ma j
|
|
}) )}(\
|
|
}-\ \
|
|
}}^{ |\
|
|
}] )-\
|
|
Ġa u
|
|
)}{ {\
|
|
_{- })}\
|
|
/\ !\
|
|
}_{+ })^{
|
|
40 9
|
|
})\| <\
|
|
Ch ar
|
|
})\! -\!\
|
|
J I
|
|
N W
|
|
\ }}}{
|
|
e o
|
|
r X
|
|
t ree
|
|
w or
|
|
Ġ )]\
|
|
}\ }<
|
|
}( {}^{\
|
|
in x
|
|
(\ (
|
|
Ġ\[= ((
|
|
box minus
|
|
}_{+ ,\
|
|
}}\, =\,
|
|
not e
|
|
],\ ;\
|
|
lat tice
|
|
06 8
|
|
Ġre c
|
|
Ġmini mal
|
|
6 55
|
|
K a
|
|
P l
|
|
f it
|
|
n E
|
|
ma nd
|
|
al gebra
|
|
^{- })=\
|
|
)}\ |\]
|
|
\| ,\|
|
|
ĠC B
|
|
}^{* }=-\
|
|
}\, -\
|
|
}}) ),\
|
|
Ġc m
|
|
12 13
|
|
10 11
|
|
}}-\ |
|
|
})> (
|
|
LS I
|
|
FF T
|
|
! }-\
|
|
, ...\]
|
|
F u
|
|
O O
|
|
}} ]}
|
|
hi s
|
|
)) ;\]
|
|
Ġ= :\
|
|
ĠL P
|
|
}}- |\
|
|
})) ^
|
|
)}) /
|
|
Sym p
|
|
|\! |
|
|
ĠRe lative
|
|
gene ous
|
|
E s
|
|
F ac
|
|
P g
|
|
R ay
|
|
T I
|
|
}} }}}\
|
|
ar ning
|
|
+\ ;\
|
|
si st
|
|
}| },
|
|
hi cle
|
|
ĠC u
|
|
)) ))\]
|
|
}\, :
|
|
]\ ;.\]
|
|
Ġc op
|
|
_{- },\]
|
|
(- )\
|
|
Ġw ell
|
|
}_{* })\]
|
|
35 9
|
|
fin al
|
|
Ġho r
|
|
) }:=\{
|
|
3 34
|
|
B f
|
|
}} })-
|
|
}} }\|_{\
|
|
qu ery
|
|
^{* }=(\
|
|
Ġt ree
|
|
}}) )(
|
|
Ġe mb
|
|
ĠP ri
|
|
\[| ||
|
|
)] =(
|
|
})) [
|
|
\},\ ;
|
|
\},\ ,\
|
|
,+ ,
|
|
Tor s
|
|
Ġlin k
|
|
Ġlay er
|
|
- })
|
|
. }}(
|
|
I sing
|
|
] ^{*}\
|
|
_ \
|
|
b H
|
|
Ġ )^{-\
|
|
}= ||\
|
|
{| }[
|
|
}^{+ })+\
|
|
^{+ })-
|
|
25 3
|
|
))=\ {\
|
|
\; :\;
|
|
)^{* }}\
|
|
|}{ }
|
|
}}\! +\!\
|
|
Ġresp ectively
|
|
C ar
|
|
E SS
|
|
I H
|
|
V P
|
|
k E
|
|
y d
|
|
Ġ\ ;\;\
|
|
_{\ {-
|
|
}}\ })\]
|
|
at ure
|
|
}^{* }+(
|
|
)) |_{\
|
|
Ġ=\ {(\
|
|
ĠS ec
|
|
})_{ ,
|
|
ĠE n
|
|
}}| =|
|
|
... +\
|
|
}}^{- }(\
|
|
}_{- },
|
|
64 4
|
|
45 5
|
|
gen era
|
|
|}{\ |
|
|
reg ular
|
|
)\! -\!
|
|
}))- (\
|
|
Set s
|
|
0 95
|
|
K k
|
|
O G
|
|
P in
|
|
S tep
|
|
x T
|
|
)}^{ [
|
|
}_{* }-\
|
|
06 5
|
|
49 5
|
|
dxdy dt
|
|
denti ty
|
|
- ((
|
|
6 79
|
|
: -\
|
|
= {
|
|
C as
|
|
D PD
|
|
s er
|
|
s depth
|
|
w c
|
|
\[ +(\
|
|
ar io
|
|
}- (-\
|
|
}+\ ,\
|
|
^{* }}\|_{
|
|
ĠS tab
|
|
12 00
|
|
Ġp erf
|
|
Ġr v
|
|
}), [\
|
|
}_{* }=\
|
|
&& &&\
|
|
})^{* })\]
|
|
Ġsu rf
|
|
4999 31
|
|
$ })=\
|
|
* })\
|
|
3 99
|
|
3 000
|
|
T H
|
|
] )=(
|
|
Ġ gap
|
|
ma rg
|
|
}(\ {|
|
|
^{* }=\{
|
|
}^{* }:=
|
|
}\, +
|
|
{| }\,(
|
|
Ġc p
|
|
}^{+ })}^{
|
|
}})\ }\
|
|
}}{( -\
|
|
44 4
|
|
Ġit erations
|
|
Ġcomp lex
|
|
poly log
|
|
va tive
|
|
cen ario
|
|
+ ((
|
|
L y
|
|
f m
|
|
}_{ <\
|
|
Ġf g
|
|
),\ ,\,
|
|
_{- }\\
|
|
ĠD o
|
|
ĠD iv
|
|
on ential
|
|
)}, {\
|
|
}_{- }=\
|
|
Ġ10 1
|
|
)! }\,\
|
|
04 3
|
|
Ġlo cally
|
|
fi eld
|
|
ei ch
|
|
}}{{= }}(
|
|
- ,\
|
|
4 75
|
|
E ll
|
|
o i
|
|
r opy
|
|
w n
|
|
x Rightarrow
|
|
ma tch
|
|
}) [(
|
|
me try
|
|
)^{ [\
|
|
}}(\ ,\
|
|
{| }-
|
|
Ġb ad
|
|
{\| }+\
|
|
}}\, +\,\
|
|
], &
|
|
36 6
|
|
}}:=\ |
|
|
04 2
|
|
96 9
|
|
38 6
|
|
98 7
|
|
RE S
|
|
& ,
|
|
H Q
|
|
] )_{\
|
|
] _{+}\
|
|
m E
|
|
x c
|
|
}) )}+\|
|
|
-\ (
|
|
var triangleright
|
|
Ġ1 0000
|
|
}] |_{
|
|
}^{- }}^{
|
|
)) /(
|
|
re es
|
|
}^{+ }}^{\
|
|
Ġh yp
|
|
}}^{* })
|
|
)}) >
|
|
37 9
|
|
})]\ !
|
|
})^{* },\
|
|
Ġmod u
|
|
Ġequ al
|
|
$ }}}}
|
|
& *\
|
|
, ...\
|
|
- }-
|
|
: }&\
|
|
M Q
|
|
O F
|
|
r B
|
|
u rce
|
|
}( ((
|
|
)\ #
|
|
^{* }}|\
|
|
^{* ,*}(
|
|
Ġc ross
|
|
}}| ^{-
|
|
22 22
|
|
}}^{* }.\]
|
|
uv w
|
|
}^{\# }
|
|
\)\ (
|
|
ĠBo und
|
|
Ġparti tion
|
|
Ġste ps
|
|
$ })
|
|
B Q
|
|
F v
|
|
h L
|
|
i V
|
|
Ġ }}}(
|
|
}( +\
|
|
lo pe
|
|
^{* }:=
|
|
^{* }}}\]
|
|
ge o
|
|
}& =(\
|
|
ĠA dd
|
|
Ġs cal
|
|
vec h
|
|
)_{ -\
|
|
_{+ })-
|
|
}}}{ [
|
|
};\ ;\
|
|
Ġ(\ {
|
|
ab q
|
|
rr rr
|
|
38 7
|
|
Cy l
|
|
) })}^{
|
|
C ut
|
|
C au
|
|
I Q
|
|
M k
|
|
T p
|
|
T ree
|
|
] }}^{
|
|
Ġ am
|
|
Ġ cal
|
|
Ġ er
|
|
(\ #
|
|
)\ }-
|
|
)\ |\,\
|
|
+\ |(
|
|
par ity
|
|
\| -\|
|
|
}\, ,&\
|
|
Ġi v
|
|
Ġ\[= -(\
|
|
ĠD om
|
|
:= |
|
|
}}| ,\]
|
|
il ar
|
|
15 00
|
|
28 1
|
|
aus s
|
|
Ġprop er
|
|
bit ra
|
|
& ,\
|
|
3 16
|
|
4 96
|
|
W Z
|
|
u ps
|
|
_{\ !\
|
|
si dual
|
|
ad v
|
|
tor y
|
|
Ġf o
|
|
}\| [\
|
|
}^{+ }=\{
|
|
Ġ{\ |
|
|
25 00
|
|
Ġ\, |\,
|
|
,* }_{\
|
|
N l
|
|
R Z
|
|
g A
|
|
Ġ }=-\
|
|
}} }),\
|
|
}| -(
|
|
ap x
|
|
[\ {\
|
|
}] ),
|
|
}\, :\
|
|
\, ;\,\
|
|
}}) |_{\
|
|
}}) -(\
|
|
Ġn k
|
|
Ġc lasses
|
|
ĠS ch
|
|
Ġp n
|
|
_{- }},\
|
|
)| )^{
|
|
ĠN T
|
|
ĠR un
|
|
_{+ })=
|
|
{\{ }[
|
|
))= \]
|
|
}+| (
|
|
)}| |_{
|
|
]+ \]
|
|
}}\! +\!
|
|
ĠCo nt
|
|
Ġsing le
|
|
Ġdivi des
|
|
- ,-\
|
|
. }(
|
|
C lo
|
|
P K
|
|
R Mod
|
|
)}\ ,(
|
|
^{* }}\|\
|
|
}^{* }_{+
|
|
^{( *
|
|
)-\ (
|
|
Ġs ti
|
|
_{- })=\
|
|
ĠE qu
|
|
ik t
|
|
}$ .}\
|
|
Ġde ri
|
|
38 1
|
|
78 8
|
|
0 76
|
|
K D
|
|
O bs
|
|
a C
|
|
a F
|
|
c losed
|
|
j ac
|
|
j oin
|
|
z p
|
|
{ *}
|
|
at es
|
|
tar y
|
|
}] )-
|
|
}}_{ /
|
|
Ġn c
|
|
Ġs tab
|
|
})- |\
|
|
})( |\
|
|
Ġin vertible
|
|
30 3
|
|
})/ {\
|
|
Min imize
|
|
Ġ\(|\ )
|
|
ĠData set
|
|
}&* \\
|
|
B ord
|
|
N ull
|
|
S X
|
|
h q
|
|
Ġ }^{*
|
|
)\ (
|
|
}| )-
|
|
}] )(
|
|
Ġa ct
|
|
ĠN eu
|
|
ĠM A
|
|
Ġ{\ {
|
|
16 00
|
|
\[[ -\
|
|
34 1
|
|
98 0
|
|
06 7
|
|
46 6
|
|
Op en
|
|
Tri v
|
|
- }_{
|
|
J P
|
|
J V
|
|
L m
|
|
\ })+\
|
|
c C
|
|
f n
|
|
t Z
|
|
v g
|
|
}) )&
|
|
}} }}+\
|
|
}} })^{-
|
|
}, -(
|
|
}}{ =
|
|
Ġ1 12
|
|
&\ |
|
|
ĠA N
|
|
ĠM N
|
|
)/ {\
|
|
)! \,
|
|
)! !(
|
|
)}+ |\
|
|
99 4
|
|
27 3
|
|
ea sible
|
|
cop y
|
|
Pri m
|
|
Ġnet work
|
|
) }}\,.\]
|
|
\ :\
|
|
h H
|
|
s F
|
|
s H
|
|
z c
|
|
{ `
|
|
Ġ }+(\
|
|
}) )}{(
|
|
}) }}{{=}}\
|
|
}] <
|
|
)) _{(
|
|
Ġi q
|
|
ĠT HH
|
|
\[\| (-\
|
|
\[\{ |\
|
|
})\, =\
|
|
Ġ\[+\ ,\
|
|
multi map
|
|
~{} ~{}
|
|
measu rable
|
|
. }}}{{=}}
|
|
; }\
|
|
L I
|
|
Ġ )),\]
|
|
Ġ argmin
|
|
)\ }|\
|
|
qu asicoherent
|
|
{( (\
|
|
Ġ& \|\
|
|
}\, :=\
|
|
})= -(\
|
|
\,\ {\
|
|
})- (-
|
|
}^{+ (
|
|
}_{+ })}^{
|
|
^{*} _
|
|
}_{* }^{(
|
|
25 1
|
|
33 0
|
|
44 1
|
|
Ġ{* })\
|
|
ty p
|
|
tra p
|
|
iz er
|
|
). (
|
|
{< }\
|
|
+ },
|
|
3 64
|
|
L c
|
|
P os
|
|
R O
|
|
u N
|
|
z A
|
|
Ġ ],\
|
|
}) }]\]
|
|
ar se
|
|
&\ |\
|
|
Ġal go
|
|
}}^{* }+
|
|
56 5
|
|
}=\{\ ,
|
|
79 5
|
|
07 2
|
|
{: }}=\
|
|
Ġabo ve
|
|
4 12
|
|
W S
|
|
[ ]{
|
|
] })^{\
|
|
] _{+
|
|
{ }^{*}
|
|
{ /\!\!/
|
|
Ġ }.\]
|
|
Ġ }^{*}
|
|
al k
|
|
}} })-\
|
|
},\ !
|
|
na t
|
|
tri p
|
|
),\ |
|
|
Ġc b
|
|
})}\ )
|
|
}^{+ }|
|
|
))= (-
|
|
): \\
|
|
\[\{\ ,
|
|
27 4
|
|
48 6
|
|
}): |
|
|
_{{}_{ [
|
|
def ined
|
|
Ġ{* }}\
|
|
po rt
|
|
IN V
|
|
Ġcond itions
|
|
conn ected
|
|
B Y
|
|
R Q
|
|
o ci
|
|
Ġ }}[
|
|
}\ :\
|
|
}) }}=
|
|
{\ }}-
|
|
wi rt
|
|
}\| ,
|
|
re en
|
|
ĠT ran
|
|
)}( |\
|
|
)| },\]
|
|
}]\ }_{
|
|
\! (\
|
|
)}}{\ |\
|
|
np ut
|
|
Con j
|
|
}\,(\ ,
|
|
In dex
|
|
&* &*
|
|
ĠCo st
|
|
Ġcomp lete
|
|
cond ition
|
|
,\,\,\,\ ,\,\,\,\
|
|
Ġso ft
|
|
4 000
|
|
c E
|
|
Ġ )\,.\]
|
|
}(\ #
|
|
eg ory
|
|
}] ]=
|
|
}^{* }}|
|
|
)) ,\,
|
|
Ġf r
|
|
}& &&
|
|
Ġc at
|
|
ĠS ol
|
|
}),\ ,(
|
|
}^{+ }&\
|
|
Ġj i
|
|
Ġco l
|
|
78 7
|
|
07 7
|
|
Eu cl
|
|
Ġstrict ly
|
|
C q
|
|
N at
|
|
P art
|
|
R p
|
|
a city
|
|
j v
|
|
Ġ0 00
|
|
{) }}_{\
|
|
}^{- }|^{
|
|
}^{*}\ }\
|
|
)}) ]\]
|
|
05 1
|
|
Ġse e
|
|
Ġbe long
|
|
_{! }(\
|
|
\({ }^{*}\)
|
|
$ }}^{
|
|
K Q
|
|
N or
|
|
O E
|
|
s M
|
|
y h
|
|
Ġ ver
|
|
)\ }-\
|
|
},\ !\
|
|
{( {\
|
|
}| )}{
|
|
ro ups
|
|
{) }}{|
|
|
}^{- {\
|
|
Ġt N
|
|
Ġt u
|
|
Ġd l
|
|
ĠT rue
|
|
\,\ }\
|
|
ĠW e
|
|
)}(\ {
|
|
}\}\ {
|
|
45 8
|
|
26 2
|
|
{)}+ \]
|
|
06 9
|
|
08 5
|
|
Con st
|
|
Ġad missible
|
|
Ġcor resp
|
|
{\{}{\ }}{
|
|
ĠMaxi mum
|
|
0 96
|
|
D is
|
|
D im
|
|
I t
|
|
] ]^{\
|
|
x L
|
|
z er
|
|
al low
|
|
co der
|
|
}}_{ =\
|
|
ci p
|
|
ĠA p
|
|
ĠT X
|
|
\}\ !\!\
|
|
}]\ |^{
|
|
)=( (\
|
|
)! !}{(
|
|
)})\ }_{
|
|
mix ed
|
|
ew ton
|
|
Ber n
|
|
T OL
|
|
f act
|
|
w ind
|
|
Ġ ll
|
|
Ġ }}{{\
|
|
}) },&\
|
|
Ġ\ }^{
|
|
})= +\
|
|
})=\ {(\
|
|
_{* }),
|
|
^{+ ,
|
|
ĠG F
|
|
}))\ }_{
|
|
)}= {\
|
|
): |\
|
|
ik l
|
|
99 0
|
|
\; .\
|
|
Ġ:= -
|
|
06 6
|
|
]\! ]_{\
|
|
dxdy dz
|
|
IP W
|
|
cont inuous
|
|
ĠInt er
|
|
K X
|
|
n er
|
|
t Q
|
|
z P
|
|
Ġ )&\
|
|
Ġ })}.\]
|
|
se u
|
|
)}\ },\]
|
|
)=\ ,\
|
|
^{* }))^{
|
|
}] )=[
|
|
ĠC O
|
|
ĠC X
|
|
)) )\\
|
|
}}) )-
|
|
{| }}{\
|
|
pro b
|
|
Ġc N
|
|
di sp
|
|
}^{+ })+
|
|
\[\|\ ,
|
|
)(\ |\
|
|
{{ }_{\
|
|
ref l
|
|
30 7
|
|
05 4
|
|
,* },
|
|
:, :,
|
|
})\! =\!
|
|
;\,\ ,\,
|
|
\}-\ {
|
|
^{(+ )}_{
|
|
. }\,\
|
|
9 55
|
|
H I
|
|
M ed
|
|
] >\
|
|
j e
|
|
m w
|
|
p ub
|
|
Ġ cases
|
|
ti ent
|
|
)) )}{
|
|
)) |=
|
|
ĠB P
|
|
:= |\
|
|
Ġin di
|
|
34 0
|
|
}$ )}\]
|
|
37 4
|
|
76 7
|
|
|\! |_{
|
|
term s
|
|
Ġalgo ri
|
|
) })}.\]
|
|
3 14
|
|
C b
|
|
] ]^{
|
|
] <+\
|
|
f pp
|
|
q B
|
|
| ,\\
|
|
ma nn
|
|
{\ }}}\
|
|
lo city
|
|
}| |=
|
|
ĠC q
|
|
Ġ= (-\
|
|
<\ !
|
|
Ġw ork
|
|
dr y
|
|
)> -
|
|
28 2
|
|
000 3
|
|
Le ftarrow
|
|
ome nt
|
|
})},\ |
|
|
Ġ{* }_{
|
|
{, }
|
|
dimension al
|
|
, {}_{
|
|
> \,
|
|
X v
|
|
] ],\]
|
|
g onal
|
|
q Q
|
|
r D
|
|
t W
|
|
}_{ -(
|
|
}} ]=[
|
|
}^{- })_{
|
|
Ġn r
|
|
ĠB A
|
|
\,\ |\,\
|
|
}}| |_{\
|
|
et s
|
|
\! [\
|
|
]+ (\
|
|
44 7
|
|
78 5
|
|
]\! ]}\
|
|
Ġpro blem
|
|
Qu ad
|
|
) })]
|
|
+ }=\
|
|
, {}^{\
|
|
- }=
|
|
h et
|
|
p I
|
|
v G
|
|
y c
|
|
Ġ })|\
|
|
}) }\,,\
|
|
^{\ |\
|
|
}(\ #\
|
|
nu s
|
|
Ġ{ -(
|
|
tri vial
|
|
}\| ).\]
|
|
Ġk g
|
|
<\ !\
|
|
Ġc KP
|
|
ĠI nitial
|
|
)\, :=\
|
|
}}, |\
|
|
Ġh eigh
|
|
{\| }.\]
|
|
}}| }{|
|
|
Ġ$ \{
|
|
)\|_{ (
|
|
>\ !
|
|
23 0
|
|
)\| (\
|
|
48 5
|
|
}): [
|
|
75 8
|
|
38 9
|
|
mo geneous
|
|
) _{*}(
|
|
E uc
|
|
P erm
|
|
\ }))\
|
|
}\ #\{
|
|
}) )^{*
|
|
}} }=-\
|
|
}}\ },
|
|
geq q
|
|
^{* }+(
|
|
Ġ\[\ ,\
|
|
Ġa e
|
|
Ġ= :
|
|
Ġd H
|
|
ĠA cc
|
|
Ġp os
|
|
ĠD v
|
|
ĠG aussian
|
|
{{ !
|
|
36 2
|
|
)$ .}\]
|
|
,\,\,\ ,\,
|
|
K SD
|
|
R SS
|
|
S YT
|
|
V alue
|
|
f ac
|
|
r R
|
|
w b
|
|
Ġ }||
|
|
Ġ ]{
|
|
}\ }_{(
|
|
}) )},\
|
|
Ġ\ ,-
|
|
}} }|^{
|
|
}}) )-\
|
|
)}{ (-
|
|
ĠN F
|
|
{)} |_{
|
|
Ġo ccu
|
|
34 2
|
|
45 9
|
|
}): \,\
|
|
_{[\ ![
|
|
{|}\,\ ,
|
|
mi ssing
|
|
fi ll
|
|
)\},\ {(
|
|
= +
|
|
D I
|
|
I mp
|
|
I mage
|
|
W V
|
|
\ })>
|
|
a co
|
|
Ġ )}=
|
|
Ġ mult
|
|
in put
|
|
}}) ^{*}\]
|
|
}\,\ |\,
|
|
}}| |^{
|
|
,- }^{\
|
|
|| |\
|
|
Ġan aly
|
|
}}: |
|
|
})},\ |\
|
|
Ġdi rect
|
|
cs ch
|
|
Ġgenera ted
|
|
Ġeigen value
|
|
Ġstr uct
|
|
! +\!
|
|
D s
|
|
M g
|
|
V X
|
|
W X
|
|
\ }=(
|
|
x Q
|
|
Ġ }^{*}(
|
|
}\ }^{-
|
|
}) }/\
|
|
}{ }_{*}
|
|
Ġ1 25
|
|
}}) }\\
|
|
ĠA A
|
|
Ġc luster
|
|
ĠH y
|
|
tt er
|
|
Im m
|
|
xx t
|
|
}(| |\
|
|
)}) ).\]
|
|
leftrightarrow s
|
|
56 9
|
|
ne gative
|
|
Da ta
|
|
ĠParameter s
|
|
! =\!
|
|
. }}{{=}}\
|
|
6 88
|
|
C g
|
|
a P
|
|
f dx
|
|
Ġ phase
|
|
}_{ :
|
|
ph g
|
|
)\ }^{\
|
|
da p
|
|
}- ((
|
|
}^{- })(
|
|
}^{* })_{\
|
|
Ġ} })
|
|
ci l
|
|
}\| ,\|\
|
|
}\|_{ (\
|
|
}\|_{ *}\
|
|
}& +
|
|
ĠB u
|
|
})}\ {
|
|
^{+ }|\
|
|
}+( |
|
|
}< _{\
|
|
)! }+\
|
|
as c
|
|
64 7
|
|
}}:=\ {(
|
|
,+ }+\
|
|
}}^{+ },\
|
|
})\|\ |
|
|
,\; (
|
|
}! }.\]
|
|
Fil t
|
|
ob lv
|
|
lay er
|
|
peri odic
|
|
* ,\
|
|
D Q
|
|
H dg
|
|
K g
|
|
N z
|
|
q X
|
|
u P
|
|
^{* }}}{{\
|
|
Ġ_{ |
|
|
ĠR E
|
|
}}- [
|
|
sta ll
|
|
,- },
|
|
20 21
|
|
}}^{- ,
|
|
dz dt
|
|
up downarrow
|
|
26 3
|
|
))\, ,\
|
|
Ġch a
|
|
Do F
|
|
; =\;
|
|
= _{\
|
|
X T
|
|
\ }}\|\
|
|
] )}.\]
|
|
c F
|
|
c S
|
|
f ast
|
|
j c
|
|
k S
|
|
l arge
|
|
n leq
|
|
}^{- })^{\
|
|
}}) }}\
|
|
}}) )+\
|
|
Ġn ormal
|
|
id ual
|
|
})- [
|
|
ĠI T
|
|
_{+ })-\
|
|
)}, (\
|
|
{}_{ [
|
|
)! !}{
|
|
35 1
|
|
sk w
|
|
05 2
|
|
29 3
|
|
60 7
|
|
iH t
|
|
) $,
|
|
* }}\
|
|
> }\
|
|
A pp
|
|
D c
|
|
K J
|
|
N X
|
|
N umber
|
|
] })(
|
|
h K
|
|
Ġ arg
|
|
}^{ =
|
|
Ġ\ ;\;
|
|
{\ }}(
|
|
ft p
|
|
}_{\ |
|
|
^{* }&\
|
|
)) }|
|
|
}}_{ +}(
|
|
)} &-
|
|
})= (-\
|
|
ĠT or
|
|
_{- }\|_{
|
|
_{- })+
|
|
^{+ }).\]
|
|
)] \|_{
|
|
... =
|
|
{{ +
|
|
en sion
|
|
60 9
|
|
95 8
|
|
)|\, .\]
|
|
Ġda y
|
|
ĠTh m
|
|
4 31
|
|
; |\
|
|
B h
|
|
L X
|
|
S o
|
|
W x
|
|
s top
|
|
x k
|
|
| }[
|
|
Ġ prox
|
|
Ġ ))}\
|
|
}\ }}+\
|
|
}) )}+\|\
|
|
^{\ #\
|
|
var iance
|
|
la ce
|
|
^{* }/\
|
|
}] \|\
|
|
}: -\
|
|
}^{* })}\]
|
|
}^{* }]\]
|
|
ĠA i
|
|
Ġc ho
|
|
_{* }[\
|
|
_{* })}{
|
|
}_{+ }).\]
|
|
Re f
|
|
)}= \]
|
|
}}^{- }}\
|
|
},\, (\
|
|
})] |\
|
|
75 2
|
|
50 8
|
|
Ġma tch
|
|
Ġad ja
|
|
ĠLi pschitz
|
|
tho gonal
|
|
, ||
|
|
A rt
|
|
T otal
|
|
g iven
|
|
Ġ )},
|
|
}} },&\
|
|
^{* +
|
|
Ġ1 44
|
|
}^{* }})\]
|
|
}\, =
|
|
Ġe vent
|
|
ĠD T
|
|
}\}\ }\
|
|
}([ (
|
|
ik s
|
|
}):=\ {(
|
|
kl t
|
|
te l
|
|
05 3
|
|
08 7
|
|
76 9
|
|
SD E
|
|
Ġinteg ral
|
|
})\|+\ |\
|
|
Ġconver ges
|
|
! +\!\
|
|
. }{\
|
|
E n
|
|
Q v
|
|
\ }=-\
|
|
Ġ })\,
|
|
Ġ tan
|
|
Ġ ^{-(
|
|
}) }),\
|
|
}_{ !
|
|
{\ }}<\
|
|
=\ !(
|
|
su sp
|
|
^{* },\\
|
|
}] ].\]
|
|
\, :\
|
|
di r
|
|
ĠE stima
|
|
{\| (\
|
|
ĠK O
|
|
ch ain
|
|
)/ |
|
|
):= [\
|
|
}_{* }^{-
|
|
Ġdx d
|
|
tu rn
|
|
77 4
|
|
,: }\
|
|
{* }{
|
|
0 110
|
|
G m
|
|
P Y
|
|
W B
|
|
f ace
|
|
i G
|
|
Ġ )}{(
|
|
}} }+(
|
|
}}\ ;\;\
|
|
ri ch
|
|
matri ces
|
|
)) ]=\
|
|
}}) ,&\
|
|
un r
|
|
{| }\|
|
|
}[ ||\
|
|
Ġb all
|
|
Ġ10 24
|
|
})) |_{
|
|
Ġ| }{
|
|
}\! :=\
|
|
Ġ\, =\,\
|
|
}}^{+ },
|
|
);\ ,\
|
|
)_{+ }}\
|
|
Ġsp ec
|
|
! ,\
|
|
, ((
|
|
Ġ )}^{\
|
|
}\ }}}\
|
|
{\ }},\\
|
|
ad m
|
|
}| ),\
|
|
^{* }}^{-
|
|
^{* }}}{\
|
|
}] }+
|
|
Ġi b
|
|
ĠN ot
|
|
}}}\ .\]
|
|
)_{ |_{
|
|
})| )\
|
|
}}[ [
|
|
})\| ,\]
|
|
76 6
|
|
Ġevery where
|
|
RS B
|
|
|/ |
|
|
Ġperi odic
|
|
riz on
|
|
. **
|
|
; ,\
|
|
Z T
|
|
d ddot
|
|
}\ {{\
|
|
}} }>\
|
|
}_{\ !\
|
|
Ġ_{ *}\
|
|
ĠS W
|
|
00 25
|
|
}}\, ,\,\
|
|
)}, -
|
|
Ġ\[+ [
|
|
75 7
|
|
29 2
|
|
}=[ (\
|
|
38 0
|
|
08 0
|
|
}=|\ {
|
|
Ġsta rt
|
|
roll ary
|
|
Ġsti ff
|
|
P RM
|
|
S ig
|
|
b N
|
|
b R
|
|
h ard
|
|
m F
|
|
s R
|
|
Ġ ell
|
|
Ġ }}\\
|
|
Ġ ^{+}\
|
|
}) ^{*}}\
|
|
}_{ |_{
|
|
}} }}{{
|
|
}{ }^
|
|
)\ ;\;
|
|
^{- }-\
|
|
{) }:=
|
|
co fib
|
|
}^{* }},
|
|
}^{* }})\
|
|
Ġf lat
|
|
}}) ^{*}(
|
|
Ġv is
|
|
Ġv ir
|
|
{[ }[\
|
|
}}+\ |(\
|
|
}))\ |_{\
|
|
}\}\ !\
|
|
}}^{* }\|_{
|
|
)! !\
|
|
pre Module
|
|
ik j
|
|
64 6
|
|
40 7
|
|
\[(- )^{\
|
|
Gra ss
|
|
E nv
|
|
J y
|
|
Q L
|
|
S im
|
|
\ }>\
|
|
b atch
|
|
Ġ ))=
|
|
Ġ )+(
|
|
su s
|
|
^{* }}\,\
|
|
\{\ {\
|
|
Ġs k
|
|
ĠT e
|
|
12 96
|
|
Ġp s
|
|
ĠN one
|
|
}}=\ {(\
|
|
})^{\ #
|
|
}_{+ }:\
|
|
}_{- }}
|
|
)\| }{
|
|
}$ }}\
|
|
95 2
|
|
SD P
|
|
})\! +\!\
|
|
Ġav erage
|
|
whi le
|
|
! \|
|
|
) $,}\\
|
|
/ ((
|
|
3 10
|
|
C w
|
|
E i
|
|
J g
|
|
\ ((
|
|
k ji
|
|
}) ^{*},
|
|
}) };\]
|
|
}) ]=[
|
|
{\ !
|
|
}| }|\
|
|
[\ ;\
|
|
}] }-
|
|
}] &=\
|
|
)) ;
|
|
}\,\ {
|
|
ĠL ear
|
|
11 10
|
|
^{*}( {\
|
|
_{[ (
|
|
up pi
|
|
30 2
|
|
96 7
|
|
Ġcontain ing
|
|
Ġsign al
|
|
))^{* }\]
|
|
rdr dx
|
|
The orem
|
|
seu do
|
|
- )=
|
|
. }\;
|
|
P OD
|
|
\ }|=\
|
|
] |\]
|
|
p op
|
|
u ble
|
|
z T
|
|
la tions
|
|
})\ ,\,
|
|
Ġ1 26
|
|
}] }-\
|
|
\{ -(
|
|
sim ple
|
|
)-\ |
|
|
Ġs cale
|
|
_{* }),\]
|
|
})}\ ,\]
|
|
\[| [\
|
|
}}| <\
|
|
}_{+ }=
|
|
_{[ [
|
|
ba s
|
|
}}^{* }+\
|
|
40 6
|
|
AB A
|
|
Ġ{- }(
|
|
ran ch
|
|
Ġcont rol
|
|
hy po
|
|
Ber noulli
|
|
+ },\
|
|
. }.\]
|
|
C i
|
|
C ho
|
|
E Z
|
|
W f
|
|
] )\\
|
|
a o
|
|
b all
|
|
q S
|
|
u A
|
|
{ *}\
|
|
| }}.\]
|
|
}\ }},\
|
|
}) })+
|
|
}} }=(\
|
|
Ġ1 80
|
|
ĠS i
|
|
ĠS pe
|
|
Ġ\( <
|
|
}]\ }.\]
|
|
23 45
|
|
20 23
|
|
})] [
|
|
)}| }{
|
|
,* }^{\
|
|
},& |
|
|
08 9
|
|
09 7
|
|
0000 00
|
|
Ġcontain ed
|
|
& :
|
|
, _{
|
|
M ST
|
|
Z B
|
|
g P
|
|
n ext
|
|
z L
|
|
| ]\
|
|
}) }=(\
|
|
)\ }}\]
|
|
na ive
|
|
^{- },\]
|
|
}] ))\]
|
|
)} *
|
|
ĠA t
|
|
)\, -\,
|
|
ĠR MSE
|
|
ĠD P
|
|
};\ ,\,-
|
|
}:= &\
|
|
}}:=\ |\
|
|
40 4
|
|
}{}{ -
|
|
{\}} ;\]
|
|
) }}[\
|
|
G I
|
|
H yp
|
|
L CB
|
|
N is
|
|
T o
|
|
W R
|
|
] :=\{
|
|
c Q
|
|
v ing
|
|
y r
|
|
Ġ })}(
|
|
Ġ )>
|
|
}} }^{*}
|
|
ot ential
|
|
^{* })=(
|
|
}: \,\,
|
|
Ġt d
|
|
ĠB e
|
|
}}= +\
|
|
_{+ }:=\
|
|
^{+ })-\
|
|
ere nt
|
|
36 3
|
|
}}}{{=}}\ {
|
|
Ġse lf
|
|
Ġdiv is
|
|
}\,:\, |
|
|
BD P
|
|
mon ic
|
|
Ġar bitra
|
|
F J
|
|
K V
|
|
R Y
|
|
] ):=\
|
|
q P
|
|
Ġ circ
|
|
}) }:=
|
|
)\ }(
|
|
op f
|
|
)}\ ,\,\
|
|
\| ).\]
|
|
}^{- |
|
|
}^{* })\\
|
|
),\ {\
|
|
Ġn T
|
|
Ġu sed
|
|
ĠT C
|
|
}^{+ })(
|
|
Ġr n
|
|
ĠR x
|
|
})+\ \
|
|
}}| <
|
|
}}\, :\,\
|
|
^{*} })^{
|
|
Ġ}( [
|
|
\[= |\
|
|
}_{- })\]
|
|
},\, {\
|
|
en ti
|
|
}\! :
|
|
}\! (\
|
|
an ce
|
|
28 3
|
|
}}^{+ }}
|
|
val ues
|
|
Ġsub space
|
|
Me thod
|
|
ĠPro blem
|
|
Ġge ne
|
|
normal size
|
|
) }^{*}
|
|
* |\
|
|
7 07
|
|
U P
|
|
\ }}^{(
|
|
^{ !}(
|
|
}) })^{-
|
|
})\ |}\
|
|
}| :\
|
|
^{* }}_{\
|
|
}^{- }<\
|
|
})^{ (-
|
|
ij ab
|
|
}}^{\ ,
|
|
Ġs table
|
|
Ġ\( [\
|
|
ĠR a
|
|
)}| =\
|
|
ac tion
|
|
inter leave
|
|
AB CD
|
|
26 1
|
|
Ġinteg ers
|
|
+ }+\
|
|
- }\]
|
|
\ }}}
|
|
| })^{
|
|
| )_{
|
|
^{ ?
|
|
)\ |\,
|
|
}= {}_{
|
|
{( }((
|
|
}=\ {-
|
|
co unt
|
|
}\, ;\,\
|
|
{(}\ |(
|
|
Ġ} })^{
|
|
48 4
|
|
Ġde nse
|
|
96 6
|
|
46 9
|
|
eigh ts
|
|
58 4
|
|
Ġdis k
|
|
Ġap proxi
|
|
9 47
|
|
D m
|
|
H it
|
|
P sh
|
|
X W
|
|
l mn
|
|
z m
|
|
| })
|
|
| }(-
|
|
)\ }&\
|
|
}= _{
|
|
{) }}=\
|
|
co d
|
|
}^{( (
|
|
}^{- }}\]
|
|
ĠC at
|
|
}}) ;
|
|
),\ ,\,\
|
|
ij r
|
|
Ġs at
|
|
{\| }\|
|
|
Ġ(\ |
|
|
}}\, ^{
|
|
}_{* })
|
|
})& (\
|
|
}}: \,
|
|
})]\ ,\
|
|
}}^{+ }_{
|
|
88 8
|
|
95 7
|
|
Pro f
|
|
Ġad d
|
|
\[\# _{
|
|
Poi sson
|
|
Ġ\(> \)
|
|
semi stable
|
|
Ġdec reasing
|
|
Ġalgori thm
|
|
4 64
|
|
b M
|
|
y i
|
|
Ġ ))=\
|
|
}} })+\
|
|
)\ #\
|
|
}=\ #
|
|
{) }_{(
|
|
Ġ{ }_{\
|
|
)) ),
|
|
}}) {\
|
|
sp oly
|
|
Ġs d
|
|
ĠT S
|
|
_{* }\|\
|
|
)\, -\,\
|
|
ĠR IS
|
|
_{+ }|^{
|
|
^{+ }},\
|
|
)|\ ,|
|
|
(( |
|
|
(( {\
|
|
ab y
|
|
Ġ_{\ {
|
|
Ġ)\ |\
|
|
Ġ}}\ |_{
|
|
,+ },\
|
|
HS IC
|
|
Qu asicoherent
|
|
eu c
|
|
Ġinj ective
|
|
stall ine
|
|
C ent
|
|
g G
|
|
v L
|
|
} .}\]
|
|
to ch
|
|
la b
|
|
bo ol
|
|
\| }(
|
|
Ġf il
|
|
}}) }_{
|
|
ge nt
|
|
_{* }\|
|
|
_{( +
|
|
ĠR andom
|
|
}}+ ||\
|
|
_{+ -
|
|
)|\ |
|
|
{- }{\
|
|
Ġ-\ ,\
|
|
}}^{( +
|
|
})) }^{\
|
|
Ġ| =
|
|
99 3
|
|
})] \,
|
|
is sion
|
|
44 3
|
|
}}] ^{-
|
|
Ġtra ining
|
|
}}&= &\
|
|
Ġposi tion
|
|
amp ling
|
|
tho ds
|
|
$ }=\
|
|
4 16
|
|
F O
|
|
\ };\\
|
|
f D
|
|
u F
|
|
x rightleftharpoons
|
|
^{ [(
|
|
}) })-
|
|
}} }}{{=}}
|
|
}, {}_{
|
|
ex it
|
|
}=\ ,
|
|
eg ori
|
|
Ġd L
|
|
Ġ( +
|
|
_{* }),\
|
|
_{* })^{\
|
|
))\ |\]
|
|
Ġv dx
|
|
\,\ }.\]
|
|
Ġ- (-
|
|
}))\ )
|
|
,\,\ |
|
|
}\}\ }.\]
|
|
dz ds
|
|
}_{* }}(\
|
|
,+ }\|_{
|
|
)$ }\
|
|
MC G
|
|
}\,|\ ,(
|
|
ĠLe ngth
|
|
Ġperi od
|
|
) }:=(\
|
|
C BC
|
|
G lo
|
|
s W
|
|
t wist
|
|
v h
|
|
| |\]
|
|
Ġ ),(
|
|
}\ },\,\
|
|
}, +}(
|
|
)) ,(\
|
|
Ġa ction
|
|
ĠA l
|
|
Ġs l
|
|
_{* }})\
|
|
ĠN e
|
|
Ġm t
|
|
)}, ...,\
|
|
{{ <
|
|
}}}( -\
|
|
48 1
|
|
,* }=\
|
|
Ġco un
|
|
78 6
|
|
SO R
|
|
sn r
|
|
ation s
|
|
tain ed
|
|
Ġpri m
|
|
! \,(
|
|
0 79
|
|
R ot
|
|
X g
|
|
| {}_{
|
|
ra ct
|
|
|_{ (\
|
|
}=\ #\
|
|
Ġ& [
|
|
ap er
|
|
}\, ,&
|
|
ĠL M
|
|
{)}\ ,(
|
|
Ġk in
|
|
Ġ\( {}^{\
|
|
_{* })^{-
|
|
Ġr un
|
|
^{+ })+\
|
|
):=\ |\
|
|
}_{* }}
|
|
)! }\,
|
|
ĠO bj
|
|
([ (
|
|
ni an
|
|
,+ }^{(
|
|
}}] }{\
|
|
66 6
|
|
_{\# }^{
|
|
abc de
|
|
den ce
|
|
Ġtran sm
|
|
Ġfac tors
|
|
Ha ar
|
|
volu tion
|
|
Ġcorresp ond
|
|
) .}\]
|
|
T ran
|
|
m I
|
|
p lan
|
|
r st
|
|
| {
|
|
Ġ }\,,\]
|
|
Ġ ](
|
|
Ġ matrices
|
|
la p
|
|
}| )}{\
|
|
ver gence
|
|
}}^{ -(
|
|
^{* })|
|
|
}}{\ ,\
|
|
dx dr
|
|
ĠS y
|
|
ĠV al
|
|
ĠD h
|
|
_{+ }\,\
|
|
_{+ }}+\
|
|
_{+ })(
|
|
tr s
|
|
}}\| +
|
|
(| (
|
|
))= |
|
|
Ġth rough
|
|
pre s
|
|
Ġ\, |\,\
|
|
)}| +\
|
|
000 4
|
|
Ġde s
|
|
el ds
|
|
ess inf
|
|
09 4
|
|
)* _{\
|
|
CF D
|
|
Ġdis joint
|
|
}$, }\]
|
|
})\|+\ |
|
|
emb ed
|
|
> .\]
|
|
H w
|
|
V F
|
|
\ }}}{\
|
|
\ }|+
|
|
f ig
|
|
| }&\
|
|
Ġ ri
|
|
Ġ ],
|
|
}\ {[
|
|
}} }}=
|
|
}| )\,\
|
|
)= &-\
|
|
^{* }}[
|
|
{) }+(\
|
|
}^{* }<\
|
|
}^{* }=-
|
|
)) )\,
|
|
^{( (
|
|
sp e
|
|
ĠB D
|
|
_{- }|\
|
|
_{- }<
|
|
Ġg radient
|
|
ĠG S
|
|
tt ing
|
|
}$ }
|
|
56 6
|
|
Ġco ordin
|
|
}}: [
|
|
ome tric
|
|
}. (\
|
|
^{\# }(\
|
|
vi ded
|
|
}}\!\!\ !
|
|
$ })=
|
|
3 19
|
|
= [-
|
|
= [(
|
|
K s
|
|
S eq
|
|
U CB
|
|
W G
|
|
] })+\
|
|
q ftp
|
|
Ġ ph
|
|
Ġ& \|
|
|
}| )|\
|
|
\| :
|
|
}^{- ,\
|
|
ĠC c
|
|
\, ]
|
|
}}_{ *}\
|
|
{| }&\
|
|
{| }\,.\]
|
|
}}^{\ {\
|
|
ĠS A
|
|
_{* }}=\
|
|
_{- })(
|
|
ĠN t
|
|
Ġy ear
|
|
}[\ {\
|
|
Tr ue
|
|
em i
|
|
)&\ \
|
|
Ġ8 00
|
|
}})=\ {\
|
|
48 7
|
|
48 9
|
|
50 9
|
|
}&= &-
|
|
{|}\,\ ,\
|
|
}}\! -\!
|
|
vi ce
|
|
resp ectively
|
|
\{+ ,-\
|
|
( ^{
|
|
) }}(-
|
|
4 29
|
|
C AC
|
|
F U
|
|
] )}(
|
|
c P
|
|
c over
|
|
q g
|
|
r U
|
|
ma te
|
|
}) ))_{
|
|
Ġ& -(
|
|
Ġ& +(\
|
|
}| )-\
|
|
)= +
|
|
Ġd b
|
|
Ġk i
|
|
ĠS pan
|
|
fo l
|
|
):= {\
|
|
}}^{* }}
|
|
27 1
|
|
\{( (
|
|
sym metric
|
|
)$ },\]
|
|
pp ing
|
|
CF L
|
|
Ġpro cess
|
|
Ġit eration
|
|
PI NN
|
|
$ }-\
|
|
3 96
|
|
N LoS
|
|
j L
|
|
q C
|
|
w q
|
|
Ġ )/\
|
|
}) })}\
|
|
}) *_{
|
|
}] }_{\
|
|
\|_{ {}_{\
|
|
)) },
|
|
\{ ||
|
|
}}) /(
|
|
Ġu u
|
|
Ġ= &-
|
|
:=\ |
|
|
}& [\
|
|
ĠS G
|
|
))\ ,\]
|
|
Ġ- }(
|
|
ĠP oly
|
|
Ġb ase
|
|
Ġg ra
|
|
,\, [
|
|
}|_{ (\
|
|
ba sed
|
|
):\ ;
|
|
{)}\, .\
|
|
})< -
|
|
}^{\# }(\
|
|
^{! }_{\
|
|
Cor e
|
|
lassi cal
|
|
spheri cal
|
|
aco bi
|
|
) })+(
|
|
N j
|
|
N v
|
|
T est
|
|
T eich
|
|
[ {
|
|
] }]\
|
|
b F
|
|
i mage
|
|
o se
|
|
p ow
|
|
)\ }\,.\]
|
|
at ter
|
|
^{* })|\
|
|
}] ^
|
|
}^{- }}(\
|
|
ĠS S
|
|
ĠI nf
|
|
}^{+ }/
|
|
ĠP D
|
|
ĠG P
|
|
)}^{ +\
|
|
}}|\ ,\
|
|
Sp r
|
|
}$ ;}\\
|
|
Le ngth
|
|
05 51
|
|
\% ,
|
|
44 9
|
|
Ġma ss
|
|
Ġ&& +\
|
|
})_{+ }\]
|
|
Ġst d
|
|
Ġprop erty
|
|
Ġsup er
|
|
Ġtri vial
|
|
Ġadja cent
|
|
) _{-}\
|
|
; &
|
|
T EP
|
|
k X
|
|
|\ }.\]
|
|
int eg
|
|
par ti
|
|
{( }{
|
|
}^{* })}
|
|
}}_{ *}(\
|
|
}\| -\|
|
|
Ġn y
|
|
ĠA P
|
|
ĠS GD
|
|
_{* }}+\
|
|
_{* }}[
|
|
\,\ |\,
|
|
Ġb ot
|
|
}; |
|
|
sh ea
|
|
}_{+ }}|
|
|
13 24
|
|
)! !}\
|
|
)}) <\
|
|
up psi
|
|
up delta
|
|
47 7
|
|
}\}+\ {
|
|
ĠEx ample
|
|
ĠNa me
|
|
) }]_{\
|
|
4 40
|
|
F h
|
|
N on
|
|
R t
|
|
U X
|
|
V x
|
|
] }:\
|
|
n G
|
|
x S
|
|
}\ }/\
|
|
}) }||
|
|
}) )}\|
|
|
}, .
|
|
Ġ& |
|
|
Ġ1 30
|
|
ĠC v
|
|
)) }}{\
|
|
}}) }-\
|
|
}|\ ,|\
|
|
ĠA c
|
|
Ġm p
|
|
ĠF ull
|
|
11 12
|
|
pt R
|
|
}}| }{\
|
|
Ġo ri
|
|
}^{*}( -\
|
|
}\! :=\!\
|
|
49 7
|
|
Ker r
|
|
09 1
|
|
St d
|
|
dn er
|
|
_{\# }(
|
|
Com m
|
|
{\# }
|
|
& =-
|
|
R n
|
|
U D
|
|
U lt
|
|
b T
|
|
Ġ ))+\
|
|
th at
|
|
ar dner
|
|
tri es
|
|
}^{- }).\]
|
|
}^{- })+\
|
|
}|\ }.\]
|
|
Ġs ph
|
|
}}=\ \
|
|
}}= &\
|
|
|_{\ {
|
|
)}+ \]
|
|
})] }\]
|
|
}|_{\ {
|
|
28 80
|
|
}]^{ <\
|
|
,+ }\]
|
|
,+ },
|
|
})\; =\;
|
|
olu tions
|
|
Ġmaxi mum
|
|
Ġabs olute
|
|
& [\
|
|
C f
|
|
E nc
|
|
Q B
|
|
S ph
|
|
i Z
|
|
Ġ })\\
|
|
}\ }}^{\
|
|
}\ })-
|
|
}) })+\
|
|
=\ )
|
|
}}\ ),
|
|
ho ck
|
|
}| }\,
|
|
rc h
|
|
}}_{ [\
|
|
}\,\ ,(
|
|
ĠA E
|
|
.\ ;
|
|
Ġp res
|
|
}^{+ }<\
|
|
\[(\ |
|
|
}})\ }.\]
|
|
_{+ }|\
|
|
}}^{- },
|
|
Ġth us
|
|
\[\{\ {\
|
|
}\! :\
|
|
an ish
|
|
|( |\
|
|
)}| +
|
|
dash arrow
|
|
44 2
|
|
06 3
|
|
Ġ* }}\
|
|
95 1
|
|
95 4
|
|
)}:=\ |
|
|
^{** },
|
|
Ġbe fore
|
|
* |
|
|
5 77
|
|
7 00
|
|
h J
|
|
u T
|
|
Ġ })|^{
|
|
}\ }}=
|
|
)\ },\\
|
|
}| (|\
|
|
}| /|
|
|
)= [(
|
|
{) }}_{
|
|
}^{- }|\
|
|
Ġu l
|
|
Ġd U
|
|
ĠD C
|
|
})-\ {
|
|
Ġh t
|
|
}_{+ }\\
|
|
)\,\ |\
|
|
Ġ}( |
|
|
)_{\ #}\
|
|
\! \{
|
|
)^{* },\
|
|
ect ral
|
|
39 4
|
|
Ġ* })\
|
|
mm se
|
|
{* }{\
|
|
circle arrowright
|
|
Ġne gative
|
|
* }=
|
|
> }
|
|
B q
|
|
D Alg
|
|
E uler
|
|
J F
|
|
R h
|
|
S in
|
|
S hi
|
|
i deal
|
|
| ))\
|
|
Ġ ]_{\
|
|
}\ })^{
|
|
in variant
|
|
al ly
|
|
ar ed
|
|
^{- }},\
|
|
}+\ ,
|
|
[\ !
|
|
\, ,&
|
|
}\| }=\
|
|
ĠB U
|
|
ĠD L
|
|
)] +[
|
|
il d
|
|
})| }.\]
|
|
** (
|
|
** \(\
|
|
Ġ+ (-
|
|
20 20
|
|
Ġ}^{ [
|
|
\[= [
|
|
)}}{ |\
|
|
)\|\ |\
|
|
}|| (\
|
|
75 5
|
|
55 8
|
|
}! \,
|
|
\# (
|
|
}|< |\
|
|
CR B
|
|
const raint
|
|
{}{ {
|
|
\: .\]
|
|
\ )=
|
|
i U
|
|
n Q
|
|
x N
|
|
Ġ }|}\
|
|
}= {}^{\
|
|
)) }{|\
|
|
Ġt p
|
|
{| }}\
|
|
\|\ ,\|
|
|
\{\ !\!\
|
|
_{- };
|
|
_{- }\|_{\
|
|
00 20
|
|
ĠM AX
|
|
ĠR ad
|
|
ĠK dV
|
|
Ġw ave
|
|
per fd
|
|
(( (\
|
|
})| ^
|
|
}}\| {\
|
|
\[[ [\
|
|
Ġ| +
|
|
45 4
|
|
37 3
|
|
79 7
|
|
})^{* },\]
|
|
]\! ],\
|
|
})[ [
|
|
Ġle arning
|
|
])= [\
|
|
Ġho ld
|
|
Mul ti
|
|
Down arrow
|
|
fpp f
|
|
rich let
|
|
# \{(
|
|
0 60
|
|
B eta
|
|
K z
|
|
M c
|
|
T J
|
|
V G
|
|
X e
|
|
w k
|
|
y R
|
|
Ġ }}}\]
|
|
de R
|
|
}| }\\
|
|
\| }(\
|
|
pa rameter
|
|
ĠC G
|
|
}^{* }|_{
|
|
}}) }-
|
|
}}) )}\
|
|
)+ (-\
|
|
Ġd N
|
|
Ġs cheme
|
|
_{* }{\
|
|
^{+ }|_{
|
|
}> =
|
|
}_{+ }}(\
|
|
23 04
|
|
}^{*}( {\
|
|
}$ }_{
|
|
)}| (
|
|
96 5
|
|
06 1
|
|
08 6
|
|
66 8
|
|
ĠAv g
|
|
ĠPo i
|
|
Ġcent er
|
|
poch s
|
|
. }\,
|
|
A bs
|
|
F o
|
|
q L
|
|
v ity
|
|
}) })_{\
|
|
}, *}(
|
|
})\ |^{\
|
|
}- )\
|
|
eg el
|
|
end s
|
|
ĠC Z
|
|
}}_{ |
|
|
}^{+ })}
|
|
Ġy y
|
|
Ġr x
|
|
Ġ10 8
|
|
}_{* }+\
|
|
Ġ| (\
|
|
}): \]
|
|
50 7
|
|
88 0
|
|
SS YT
|
|
ĠDe ep
|
|
Ġsta ndard
|
|
IF AR
|
|
ĠLo ss
|
|
$ {\
|
|
$ }}(
|
|
* )\]
|
|
- ||
|
|
3 01
|
|
D J
|
|
F K
|
|
L z
|
|
M IN
|
|
W M
|
|
h gh
|
|
m icro
|
|
Ġ frac
|
|
math acc
|
|
}} };
|
|
ar ch
|
|
}| )\,
|
|
li ce
|
|
^{* })]\
|
|
}^{* }}[
|
|
un fold
|
|
}|\ {\
|
|
ĠB G
|
|
di an
|
|
st s
|
|
\[|\ !|\!|
|
|
(-\ |
|
|
}_{+ }}|\
|
|
}+( (\
|
|
})| )\]
|
|
Ġ\[+\ ,
|
|
))^{ +
|
|
back sim
|
|
ĠO D
|
|
\},\ ;\
|
|
{\}}\ .\]
|
|
08 4
|
|
{|}\, |
|
|
ran ce
|
|
tim ization
|
|
mathacc ent
|
|
) }}}(
|
|
) *}\
|
|
) }],\]
|
|
. +(
|
|
5 25
|
|
< \|\
|
|
] }&
|
|
] };
|
|
k P
|
|
p ure
|
|
w R
|
|
Ġ succ
|
|
Ġ ))-\
|
|
^{ [-
|
|
}( _{
|
|
}) $}.\]
|
|
Ġ\ }=\
|
|
}_{\ {\|
|
|
}| +\|
|
|
Ġi u
|
|
Ġa xi
|
|
Ġ}\ }.\]
|
|
{(} [-
|
|
Ġk j
|
|
Ġs r
|
|
Ġs kew
|
|
vec tor
|
|
ĠI ter
|
|
{] }}\]
|
|
{] }&\
|
|
Ġ{\ |\
|
|
}})\ .\]
|
|
_{+ }}}\
|
|
^{+ }}}\
|
|
ĠG u
|
|
Re c
|
|
^{*}( -\
|
|
oth er
|
|
)\| ^
|
|
Ġ\,\ |
|
|
56 1
|
|
)}} <\
|
|
Ġse ch
|
|
Ġme tric
|
|
]: |
|
|
comp lex
|
|
Ġuni form
|
|
^{! }(\
|
|
com pact
|
|
hy dro
|
|
+ ...+
|
|
8 40
|
|
A lb
|
|
O DE
|
|
] {(
|
|
] $}.\]
|
|
w dx
|
|
| )}(
|
|
Ġ triangle
|
|
Ġ ^{*}_{
|
|
Ġ }]_{
|
|
ra ted
|
|
}} }:=
|
|
_{\ !\!\
|
|
lo ad
|
|
)) }{(\
|
|
}}) )+
|
|
)} /(
|
|
)} <+\
|
|
ĠL C
|
|
ĠA b
|
|
}}= -(
|
|
_{+ })+
|
|
^{+ }:=\
|
|
]}\ {\
|
|
-( |
|
|
Ġin variant
|
|
})(\ |
|
|
}=-\ ,\
|
|
Ġis omorphism
|
|
Ġ}{ {\
|
|
en ces
|
|
as k
|
|
}\; .\
|
|
)^{* })\]
|
|
56 3
|
|
000 6
|
|
,* },\
|
|
Du al
|
|
Ġ* },\
|
|
!\! /\
|
|
58 9
|
|
fin e
|
|
})\! -\!
|
|
Ġfinite ly
|
|
_{\! {}_{
|
|
}^{{ }_{(
|
|
GO E
|
|
Fe yn
|
|
) [\![
|
|
A MP
|
|
H v
|
|
J B
|
|
L eg
|
|
R am
|
|
] *
|
|
b etween
|
|
n is
|
|
w ar
|
|
^{ {}^{(
|
|
}) }=-
|
|
}| }^{\
|
|
}^{- }),\
|
|
)) ))\
|
|
Ġf a
|
|
Ġ=\ |(
|
|
}& (-
|
|
Ġc x
|
|
vec t
|
|
ĠE B
|
|
}), |
|
|
}_{+ })}
|
|
14 23
|
|
dz d
|
|
}_{* }}(
|
|
che s
|
|
Ġ| {\
|
|
})] (\
|
|
36 00
|
|
}}[\ ![
|
|
)}\, =\,\
|
|
29 1
|
|
06 2
|
|
Ġ{* },\
|
|
Ġ{* },
|
|
^{** }
|
|
Ġare a
|
|
}|\, ,\]
|
|
ime n
|
|
ĠAd am
|
|
! \|\
|
|
) })=(\
|
|
- ),
|
|
5 40
|
|
E CT
|
|
I Br
|
|
K m
|
|
V U
|
|
j y
|
|
z B
|
|
Ġ }\,(
|
|
}) .}\]
|
|
}) )+(\
|
|
}} !
|
|
}}\ })\
|
|
}, (-\
|
|
}, [-
|
|
^{- [
|
|
)}\ ;,\]
|
|
}/ [\
|
|
ĠL ea
|
|
Ġk r
|
|
ĠT op
|
|
}}}\ ;\
|
|
^{+ }}-\
|
|
}_{+ }:
|
|
^{*}( [
|
|
div idual
|
|
\[=\ |
|
|
|| }{
|
|
)! (\
|
|
)! }(\
|
|
96 1
|
|
79 3
|
|
59 2
|
|
69 0551
|
|
]\, :\,
|
|
^{(- )}_{
|
|
comp osition
|
|
})_{+ }^{\
|
|
})\! +\!
|
|
mon o
|
|
`` \
|
|
Hod ge
|
|
shea ves
|
|
imen sion
|
|
) }})=\
|
|
5 24
|
|
: \{\
|
|
S mall
|
|
f ic
|
|
l q
|
|
}\ })}\
|
|
me rical
|
|
}} })+
|
|
cal l
|
|
su r
|
|
er g
|
|
^{* })_{\
|
|
^{* }\|\]
|
|
Ġ1 40
|
|
)) ]_{
|
|
{| }}{
|
|
Ġn h
|
|
}|\ ;
|
|
}[ :,
|
|
}\,\ \
|
|
{)}\ ;,\]
|
|
}}^{\ #
|
|
_{* })}
|
|
ĠH L
|
|
12 21
|
|
_{- }|^{
|
|
00 12
|
|
(- {\
|
|
}_{* }\|^{
|
|
as tic
|
|
)}) )=\
|
|
37 2
|
|
55 9
|
|
95 3
|
|
}\,| |\,
|
|
db l
|
|
Ġdu al
|
|
Ġcop ies
|
|
" \
|
|
" \]
|
|
- (-\
|
|
4 45
|
|
D NN
|
|
J C
|
|
] }),\]
|
|
a ck
|
|
b S
|
|
h ar
|
|
j w
|
|
k I
|
|
w o
|
|
x E
|
|
x K
|
|
x m
|
|
}\ }=-
|
|
}_{\ _
|
|
se m
|
|
li cy
|
|
)) |=\
|
|
\, _{\
|
|
)} [-
|
|
re st
|
|
ĠL ayer
|
|
)^{\ #\
|
|
ĠA ccu
|
|
ĠB MO
|
|
Ġc R
|
|
ĠH C
|
|
ĠH ess
|
|
}^{+ }[\
|
|
})_{ +}
|
|
_{+ }\,
|
|
}}| }\]
|
|
bra n
|
|
})^{- (\
|
|
^{*} <\
|
|
}|_{ {\
|
|
\; {\
|
|
Ġ[ [
|
|
98 3
|
|
po i
|
|
ĠRe ference
|
|
SW AP
|
|
Ġexp onent
|
|
,. )\
|
|
Ġspe ed
|
|
! }{(\
|
|
, [-
|
|
4 226
|
|
A LG
|
|
I W
|
|
\ }\|
|
|
h as
|
|
w ave
|
|
Ġ ]^{\
|
|
}_{ =:
|
|
},\ ,\,\,\
|
|
era ture
|
|
^{* }_{-
|
|
Ġ1 32
|
|
}^{* }((
|
|
)) )}{\
|
|
Ġt v
|
|
}\| )
|
|
Ġk e
|
|
ĠB atch
|
|
it z
|
|
))\ },\]
|
|
_{- -
|
|
)| }=
|
|
:\ :\
|
|
_{+ }).\]
|
|
})| (\
|
|
}{| |\
|
|
Ġpair s
|
|
) }):=\
|
|
* }^{-
|
|
E w
|
|
S d
|
|
b L
|
|
b its
|
|
h R
|
|
i dx
|
|
r M
|
|
z ation
|
|
Ġ }))
|
|
Ġ )}|
|
|
Ġ ))^{\
|
|
}\ }),\
|
|
}} }}_{
|
|
ti s
|
|
}}\ ;\;
|
|
}+ _{
|
|
}=\ {{\
|
|
}| })\
|
|
co vol
|
|
co mb
|
|
}}) *\
|
|
it e
|
|
ĠT f
|
|
Ġp ol
|
|
Ġ\[=\ ,
|
|
ĠF il
|
|
}> _{\
|
|
13 13
|
|
Ġth is
|
|
}_{[ -\
|
|
88 5
|
|
tra t
|
|
{{( *
|
|
Ġra n
|
|
allow break
|
|
Ġgene ric
|
|
deR ham
|
|
, ..
|
|
; &\
|
|
S pace
|
|
] }\,.\]
|
|
b E
|
|
o g
|
|
Ġ },\]
|
|
-\ {\
|
|
su lt
|
|
}- ||
|
|
}| })\]
|
|
Ġ}\ !\
|
|
]\ }_{
|
|
}[ (-
|
|
Ġe s
|
|
ĠH K
|
|
Ġg lobal
|
|
^{+ }}-
|
|
)] )^{
|
|
))= [
|
|
)})\ |\
|
|
)^{* },
|
|
}|| |\
|
|
ct ed
|
|
}&= &-\
|
|
39 3
|
|
07 3
|
|
else where
|
|
Ġemb ed
|
|
4 23
|
|
4 25
|
|
8 75
|
|
I g
|
|
O FF
|
|
a th
|
|
h I
|
|
p X
|
|
Ġ }+|
|
|
Ġ {(-
|
|
}) ),(
|
|
}} }}{(
|
|
}^{\ ;
|
|
na ch
|
|
})\ })\]
|
|
^{- }}{\
|
|
Ġa bj
|
|
), (-\
|
|
Ġk k
|
|
Ġc ard
|
|
})- [\
|
|
_{( [
|
|
ĠM I
|
|
}(- ,\
|
|
et ti
|
|
Ġ10 5
|
|
},\,\ |
|
|
78 3
|
|
58 7
|
|
^{\# },
|
|
\# (\
|
|
Ġop timal
|
|
Ġsurf ace
|
|
E e
|
|
N Q
|
|
S a
|
|
c pl
|
|
r C
|
|
r V
|
|
w g
|
|
Ġ )})
|
|
}) !}{
|
|
}}) )_{\
|
|
Ġn n
|
|
ĠB y
|
|
Ġs er
|
|
_{- }),\
|
|
}^{+ }:=
|
|
ĠD S
|
|
ĠF S
|
|
,- )\]
|
|
})=( (\
|
|
}\; |
|
|
)^{* },\]
|
|
,* }}\
|
|
39 0
|
|
Ġra m
|
|
dec reasing
|
|
ou rce
|
|
) .\\
|
|
4 21
|
|
B k
|
|
S eg
|
|
X L
|
|
d den
|
|
k K
|
|
m G
|
|
| |}\
|
|
} ..
|
|
^{ {(
|
|
}\ };
|
|
\[ :=
|
|
de ns
|
|
}= &-
|
|
se l
|
|
ro rs
|
|
}}^{ |
|
|
De l
|
|
\| }=\
|
|
ĠC W
|
|
}^{* })\|^{
|
|
Ġ= &(
|
|
ĠB L
|
|
ĠM ini
|
|
(- |\
|
|
/\ !/
|
|
Ġm x
|
|
ĠR m
|
|
pt l
|
|
\[|\ !|\!
|
|
Ġ(\ |\
|
|
})| &\
|
|
Ġin dividual
|
|
}}[ {\
|
|
_{| (
|
|
)^{* })\
|
|
})< _{
|
|
!\! \{\
|
|
Ġre n
|
|
IJ KL
|
|
}]}{ [
|
|
MP C
|
|
.... ....
|
|
{}{{ }^{*}}{\
|
|
ĠAccu racy
|
|
* }}
|
|
4 13
|
|
Q y
|
|
j ec
|
|
q D
|
|
Ġ ]+\
|
|
}}\ }^{
|
|
^{- }),\
|
|
}}^{ [-
|
|
^{* })\,
|
|
Ġ\[\ ,
|
|
}] \,,\
|
|
}^{* })=(
|
|
)) ]=
|
|
}}) }\|
|
|
)| =(
|
|
{] }|
|
|
)_{ ,
|
|
\[(\ |\
|
|
}}| )\
|
|
38 2
|
|
78 0
|
|
]\! .\]
|
|
SS I
|
|
Ġ&& &-
|
|
Ġla bel
|
|
We il
|
|
}|\!|\! |_{
|
|
ĠBi as
|
|
ode sic
|
|
ĠLear ning
|
|
! -
|
|
. }{
|
|
B ind
|
|
B AD
|
|
I RS
|
|
M y
|
|
X w
|
|
] }\)
|
|
] ],\
|
|
e le
|
|
m Q
|
|
o cc
|
|
q depth
|
|
s J
|
|
x U
|
|
Ġ },\,
|
|
ta tive
|
|
}, ||
|
|
})\ },
|
|
}| )}{|
|
|
}] ))\
|
|
}^{* }},\]
|
|
^{( |\
|
|
Ġc ar
|
|
Ġs b
|
|
12 56
|
|
ĠM V
|
|
ĠM ed
|
|
})+ [\
|
|
ĠD imension
|
|
}_{+ }},\
|
|
)}_{ -\
|
|
]^{ [
|
|
}}^{- },\
|
|
)}) ^{*}\
|
|
36 1
|
|
000 8
|
|
)}} >
|
|
50 6
|
|
76 3
|
|
]\! ].\]
|
|
09 2
|
|
77 7
|
|
) _{*}(\
|
|
5 27
|
|
8 01
|
|
< {\
|
|
A O
|
|
H ur
|
|
S ep
|
|
] )/
|
|
g q
|
|
l ar
|
|
p D
|
|
q F
|
|
w I
|
|
| }\\
|
|
Ġ let
|
|
Ġ )=(
|
|
}_{ !}\
|
|
)^{ **
|
|
}| }}\]
|
|
^{* }}}^{
|
|
}^{* ,*}(
|
|
}}_{ -\
|
|
Ġk s
|
|
}& -(
|
|
_{* }([
|
|
}^{+ }=(
|
|
ĠR L
|
|
11 01
|
|
}), |\
|
|
\) :
|
|
}}| >\
|
|
ch ed
|
|
)},\ |
|
|
})(\ |\
|
|
)}= |
|
|
}}^{* \
|
|
ĠO b
|
|
}^{[ *
|
|
}\! :\!\
|
|
)}) :
|
|
}}] }\]
|
|
he ight
|
|
|}{\ |\
|
|
^{** }(\
|
|
}}}{{= }}(\
|
|
\)\ (\
|
|
ĠGen era
|
|
Ġradi us
|
|
{{< }}{{\
|
|
) {}^{
|
|
. }(\
|
|
\ }^
|
|
h U
|
|
w ay
|
|
| ),
|
|
Ġ maps
|
|
Ġ }}{|
|
|
}} }))\]
|
|
+\ {\
|
|
}}^{ {\
|
|
Ġx n
|
|
Ġ2 40
|
|
Ġi dentity
|
|
}}) ]=\
|
|
{| }[\
|
|
}\| },\
|
|
), -(
|
|
cu racy
|
|
}/ \{\
|
|
_{- }\,\
|
|
}), ...,(
|
|
_{+ }),\
|
|
^{+ }:
|
|
{- -}
|
|
{)} .
|
|
Ġ** (
|
|
)}) )=
|
|
48 3
|
|
Ġco de
|
|
}! )^{
|
|
Alg orithm
|
|
SA M
|
|
Ġch annel
|
|
valu ed
|
|
$ }}}_{
|
|
+ }=
|
|
, <\
|
|
: [\
|
|
E qu
|
|
] }),\
|
|
b Y
|
|
s Y
|
|
s ome
|
|
Ġ ]=\
|
|
}\ }:\
|
|
ma ry
|
|
}) }}{\|
|
|
Ġ\ {-
|
|
}+\ #\
|
|
}| &
|
|
}| .\
|
|
}] ;\]
|
|
}^{* }\|\]
|
|
)} [(
|
|
}^{+ }),\]
|
|
st ru
|
|
_{+ }},\
|
|
_{+ }^{*}\
|
|
:= [\
|
|
sta n
|
|
ab d
|
|
Ġin to
|
|
Ġ| -
|
|
)})\ }\]
|
|
)|_{ (
|
|
44 6
|
|
08 3
|
|
49 4
|
|
07 4
|
|
}}\; =\;\
|
|
ie w
|
|
Ġdiff erent
|
|
tiv ation
|
|
Ġoccu rs
|
|
! }\\
|
|
H Z
|
|
K I
|
|
c pt
|
|
s V
|
|
v is
|
|
Ġ )}}{
|
|
Ġ }+|\
|
|
de an
|
|
}=\ |(\
|
|
)}\ !\!\
|
|
li an
|
|
}^{* }}+
|
|
}\, )\]
|
|
Ġi kx
|
|
Ġf ail
|
|
}}) })\]
|
|
Ġa fter
|
|
}/ \{
|
|
ĠL u
|
|
ĠS ymbol
|
|
Ġp d
|
|
)| +(
|
|
ĠN M
|
|
}; &
|
|
Ġ\,\ |\
|
|
{)}\, =\,\
|
|
,+ }+
|
|
49 1
|
|
ke y
|
|
ram ified
|
|
Ġtran si
|
|
5 36
|
|
X S
|
|
[ }\
|
|
\ }:=\
|
|
] }_{(
|
|
] },(
|
|
] ]+[
|
|
h ed
|
|
o k
|
|
Ġ }:=\
|
|
Ġ target
|
|
}^{ !}
|
|
}) }\|_{\
|
|
}) ):=
|
|
}) )].\]
|
|
,\ {(
|
|
de suit
|
|
su c
|
|
Ġ1 24
|
|
}] -(
|
|
Ġt L
|
|
}}) })\
|
|
}}) ].\]
|
|
Ġa bc
|
|
ĠL E
|
|
di tive
|
|
_{* }}-
|
|
ĠH ilb
|
|
bf d
|
|
Ġv ia
|
|
Ġr d
|
|
ĠE M
|
|
}}- \]
|
|
}\) :
|
|
}_{+ }^{-
|
|
})| -|\
|
|
}\}\ .\]
|
|
|| (\
|
|
}$ }\}.\]
|
|
Co ng
|
|
\[- {\
|
|
96 3
|
|
}&= &(
|
|
ne igh
|
|
ir th
|
|
46 1
|
|
46 3
|
|
Bi mod
|
|
spa desuit
|
|
ĠCond ition
|
|
! }(-
|
|
* })\]
|
|
B m
|
|
G f
|
|
G et
|
|
M HM
|
|
N LS
|
|
S gn
|
|
X V
|
|
\ }}&\
|
|
] })-\
|
|
] }{}^{
|
|
r Q
|
|
| )(\
|
|
}\ }\,
|
|
}\ }}+
|
|
}} })_{\
|
|
=\ !\!
|
|
=\ ;(
|
|
ri x
|
|
}^{\ #\
|
|
}| ]\]
|
|
Ġf requency
|
|
un k
|
|
}}^{\ ,\
|
|
}),\ |
|
|
^{+ }}=\
|
|
Ġ10 9
|
|
_{| |\
|
|
Co eff
|
|
35 3
|
|
ac l
|
|
^{*}, -
|
|
98 1
|
|
06 25
|
|
55 4
|
|
\[+ (-
|
|
95 9
|
|
)^{+ }(
|
|
CF K
|
|
BMO L
|
|
Ġho rizon
|
|
GH Z
|
|
ĠCom p
|
|
Ġpri mitive
|
|
- }_{\
|
|
< }\
|
|
M s
|
|
P s
|
|
Q b
|
|
b K
|
|
e con
|
|
g xy
|
|
r I
|
|
z b
|
|
}\ }_
|
|
)\ }}{\
|
|
}^{\ |\
|
|
ho lds
|
|
^{* }=-\
|
|
^{* })]
|
|
{) };\
|
|
}^{- }}{\
|
|
)) ,\,\
|
|
\, )\,\
|
|
Ġt y
|
|
ĠS o
|
|
ĠS w
|
|
ĠT P
|
|
ĠN et
|
|
ĠP V
|
|
_{+ }}-\
|
|
{\| }\|\
|
|
^{+ }_{(
|
|
}}- (-
|
|
}}| -\
|
|
\[|\ {(
|
|
}_{+ })}\]
|
|
}}\| .\]
|
|
}}[ -\
|
|
du e
|
|
}\; ,\\
|
|
19 20
|
|
}\;\ ;\;
|
|
Ġ* },
|
|
Di rac
|
|
}! }{\
|
|
Ġun if
|
|
Ġ\! -\!
|
|
}}]= [\
|
|
}}&= &
|
|
Ġga in
|
|
Ġderi vative
|
|
4226 38
|
|
= {}^{
|
|
S Z
|
|
v j
|
|
x dx
|
|
Ġ }_{-
|
|
ra ng
|
|
}) }+|
|
|
}) )^{*}\
|
|
Ġ\ {|
|
|
}} })(\
|
|
^{- ,
|
|
}^{* }{
|
|
}}) }\,\
|
|
{| }\|\
|
|
pro g
|
|
ĠB ase
|
|
\,\ \
|
|
ĠR M
|
|
}}| =|\
|
|
)|\ }\]
|
|
}\{ [\
|
|
)]\ }\]
|
|
60 6
|
|
)\; :\;
|
|
49 2
|
|
57 60
|
|
Ġra nge
|
|
ĠDe f
|
|
}}_{+ }^{
|
|
olu me
|
|
short mid
|
|
) }],\
|
|
* \]
|
|
H MR
|
|
o sp
|
|
x j
|
|
_{ {}^{
|
|
}) ^{*})\
|
|
}) ),&\
|
|
Ġ\ })\
|
|
)\ }}{
|
|
op ulation
|
|
Ġ& |\
|
|
li ft
|
|
{) }^{+}\
|
|
{) }&=\
|
|
}: \,|
|
|
\|_{ {}_{
|
|
)) .
|
|
)) })\]
|
|
Ġf amily
|
|
or th
|
|
{| }^{-
|
|
Ġu b
|
|
sup er
|
|
re ed
|
|
ĠB M
|
|
ĠT u
|
|
_{* }}+
|
|
Ġe pi
|
|
Ġ\[= {\
|
|
})}\ }_{
|
|
Ġ- [
|
|
_{+ })+\
|
|
rel int
|
|
ĠW eight
|
|
=( (\
|
|
15 36
|
|
{]}\ .\]
|
|
\[[\ ,\
|
|
te ri
|
|
)}| +|
|
|
Ġde p
|
|
}): \\
|
|
}}^{+ })\]
|
|
78 2
|
|
08 2
|
|
46 2
|
|
^{*}) ^{*}\
|
|
Ġse g
|
|
})}+\| (
|
|
Ġpa ra
|
|
}^{(+ )}(
|
|
ĠFig ure
|
|
via tion
|
|
Ġarbitra ry
|
|
/ _{\
|
|
F DR
|
|
M RT
|
|
R z
|
|
S kew
|
|
T OP
|
|
\ }|,\]
|
|
e H
|
|
h T
|
|
s G
|
|
Ġ })|
|
|
}\ }}-\
|
|
\[ :
|
|
}, ((
|
|
{) }^{*}
|
|
)) })\
|
|
\{ *
|
|
Ġt z
|
|
}}) ,&
|
|
Ġs w
|
|
ĠS emi
|
|
_{* }}^{-
|
|
)\, [
|
|
)_{ {}_{
|
|
Ġh alf
|
|
ĠG raph
|
|
}:= \]
|
|
\[= |
|
|
Ġ|\ ,
|
|
}_{* }-
|
|
pre v
|
|
\[\{\ ,\
|
|
kl m
|
|
)[ (\
|
|
,\; |
|
|
Ġvec tors
|
|
Sta nd
|
|
Ġconstraint s
|
|
satisf ies
|
|
! \{\
|
|
F m
|
|
n exists
|
|
| }<\
|
|
Ġ current
|
|
}} }}-
|
|
})\ }\\
|
|
ad dle
|
|
^{- }\|_{
|
|
se g
|
|
^{* })>
|
|
co e
|
|
}] _
|
|
}] )_{\
|
|
\| },\]
|
|
}^{- }&\
|
|
}\, )
|
|
Ġ}\ }\]
|
|
}\| /
|
|
re at
|
|
ĠL ower
|
|
ck ing
|
|
ĠB r
|
|
ĠN aN
|
|
ĠF unction
|
|
ĠP R
|
|
ĠP SL
|
|
_{+ }}=\
|
|
_{+ }^{*}\\
|
|
Ġb k
|
|
Ġg rid
|
|
^{+ })}\
|
|
\}\ ;\
|
|
)] }.\]
|
|
)] =-\
|
|
}_{+ }}{
|
|
}}\, _{
|
|
20 19
|
|
)}, [
|
|
})) ;\]
|
|
)}) <
|
|
55 2
|
|
]\! ]=
|
|
Ġre qu
|
|
97 4
|
|
Ġdy n
|
|
Ġch ain
|
|
Ġba sed
|
|
whi ch
|
|
ctr l
|
|
+ }}
|
|
\ })}{
|
|
k J
|
|
}) };\
|
|
}{ {}_{
|
|
}}\ }}
|
|
Ġ1 29
|
|
}] ]=\
|
|
}^{* }]=
|
|
)) ],\]
|
|
}}) }|
|
|
Ġd M
|
|
Ġp otential
|
|
)| {\
|
|
}\|\ ,\|
|
|
)\, ;\,
|
|
ĠD D
|
|
ĠP L
|
|
{\| }\,
|
|
^{+ ,\
|
|
Ġ3 20
|
|
ce pt
|
|
)] \,.\]
|
|
,- }\]
|
|
Ġl k
|
|
)}= :
|
|
\[= :\
|
|
}}\|\ |
|
|
})) [\
|
|
})] \|_{
|
|
con c
|
|
)}| .\]
|
|
ac p
|
|
,* }=
|
|
lu id
|
|
]-\ {
|
|
55 5
|
|
\}=\ {(
|
|
ĠRe f
|
|
Ġ\! -\!\
|
|
Ġreg ion
|
|
Ġgen erator
|
|
.&.& .&.&
|
|
liz ation
|
|
Ġcri tical
|
|
atu res
|
|
9 64
|
|
9 28
|
|
9 72
|
|
> +
|
|
A rc
|
|
H aus
|
|
\ })=\{
|
|
] :(
|
|
n om
|
|
z M
|
|
| )/
|
|
| |^{\
|
|
| }}{|
|
|
Ġ box
|
|
Ġ }=(
|
|
Ġ ]=
|
|
}) )}_{
|
|
}} }\,,\
|
|
}, +}\
|
|
se lf
|
|
Ġ0 10
|
|
^{* }):=\
|
|
^{* })\,\
|
|
^{* }|}\
|
|
}^{- }),\]
|
|
Ġi l
|
|
cu m
|
|
re lax
|
|
Ġc T
|
|
})}\ ;\
|
|
}}}\ {\
|
|
{] }>
|
|
{] }=-\
|
|
ĠM ar
|
|
Ġb u
|
|
)|\ ,|\
|
|
(( |\
|
|
)}}\ |_{
|
|
)}\, |\,\
|
|
Ad S
|
|
ĠDe t
|
|
_{> ,
|
|
cri tical
|
|
112 2
|
|
,: }\|_{
|
|
}}{{= }}(\
|
|
ĠTra ining
|
|
Ġve hicle
|
|
ĠSing le
|
|
$ }\,.\]
|
|
, &-
|
|
3 18
|
|
A ST
|
|
F EM
|
|
G AP
|
|
G auss
|
|
[ ]{\
|
|
\ }\|\
|
|
] }/
|
|
] )|\
|
|
f R
|
|
t binom
|
|
x xy
|
|
Ġ })\|^{
|
|
Ġ ^{*})\
|
|
}) };
|
|
Ġ\ #\{
|
|
Ġ1 27
|
|
Ġa bi
|
|
Ġd rd
|
|
Ġk h
|
|
ĠA nn
|
|
_{* }((
|
|
Ġp w
|
|
)| }}\
|
|
}\|\ ,\|\
|
|
Ġ^{ |
|
|
for ma
|
|
})} <+\
|
|
}_{* }.\]
|
|
}* &
|
|
}\; |\;
|
|
Ġ&= :
|
|
Ġ* &*&
|
|
57 1
|
|
ĠâĢ ľ
|
|
ĠCo rollary
|
|
Ġnon zero
|
|
rop ic
|
|
}^{** },
|
|
rac te
|
|
|\!|\! |
|
|
}(* )\
|
|
Si egel
|
|
spherical angle
|
|
) }^{*}(
|
|
) }),\\
|
|
* \\
|
|
- }}
|
|
> |\
|
|
D q
|
|
\ )-\(
|
|
] }}.\]
|
|
q K
|
|
q R
|
|
w acc
|
|
y I
|
|
z K
|
|
Ġ )[
|
|
}} }}-\
|
|
ot one
|
|
})\ :
|
|
})\ }+
|
|
^{* }||_{
|
|
pa tible
|
|
}^{- }\}\]
|
|
ij s
|
|
ĠA f
|
|
Ġs f
|
|
_{- }).\]
|
|
Ġm oment
|
|
ĠF un
|
|
_{+ }^{*
|
|
\}\ !
|
|
rel u
|
|
}))\ .\]
|
|
})| ,|
|
|
oth e
|
|
\; :\;\
|
|
Ġ[ (\
|
|
38 3
|
|
)\! )\]
|
|
}! \]
|
|
68 6
|
|
ea ch
|
|
Ġla st
|
|
Ġdivis or
|
|
5 28
|
|
5 44
|
|
8 192
|
|
P SS
|
|
R d
|
|
Y D
|
|
Z W
|
|
] })+
|
|
e z
|
|
g ch
|
|
j H
|
|
q H
|
|
u B
|
|
\[ *\
|
|
^{- }),
|
|
Ġ0 2
|
|
De p
|
|
Ġ1 16
|
|
Ġ1 36
|
|
\| {
|
|
row th
|
|
)) }}\]
|
|
Ġf f
|
|
Ġn kQ
|
|
cu bic
|
|
Ġd c
|
|
ĠS ample
|
|
_{* }},
|
|
Ġp ert
|
|
ĠN u
|
|
}}}\ ;
|
|
ĠI nput
|
|
}^{+ }\,
|
|
_{+ })_{
|
|
{\| }\!\
|
|
ĠG e
|
|
}_{+ }^{(
|
|
)/ [
|
|
}\;\ ;\;\
|
|
)}\, |\,
|
|
+\| (\
|
|
)_{+ }.\]
|
|
SA N
|
|
}_{\# }(\
|
|
}\: .\]
|
|
Ġdiffer enti
|
|
- }=\
|
|
M b
|
|
P w
|
|
S imp
|
|
] &=
|
|
e pt
|
|
g U
|
|
s parse
|
|
| }(|
|
|
Ġ ))-
|
|
}}\ {(\
|
|
la te
|
|
}+ {}^{
|
|
li j
|
|
Ġc f
|
|
Ġs ymbol
|
|
ĠS el
|
|
ĠS tep
|
|
Ġ\( =
|
|
_{* }},\
|
|
_{- (\
|
|
_{- }}}\
|
|
ĠF ed
|
|
}}+ {
|
|
_{+ }^
|
|
}}| -|
|
|
}=( [
|
|
13 23
|
|
}< \|
|
|
)}_{ >
|
|
Ġal so
|
|
}}\| |
|
|
)! }+
|
|
)! \,(
|
|
)\| <
|
|
45 3
|
|
pr ot
|
|
37 1
|
|
}))^{ (
|
|
75 9
|
|
,-\ ,\
|
|
no des
|
|
78 1
|
|
pe ak
|
|
^{** })\
|
|
^{** }-
|
|
Tw Sp
|
|
\|\, .\]
|
|
Ġpo st
|
|
Ġrepresen tation
|
|
, ^{
|
|
0 99
|
|
G v
|
|
R k
|
|
e K
|
|
f lip
|
|
m se
|
|
q E
|
|
t U
|
|
z R
|
|
Ġ ^{+}(
|
|
}\ })+
|
|
^{- *
|
|
^{- }},
|
|
)) }<\
|
|
}}) ))\]
|
|
}}) ^{*}(\
|
|
}}) ;\]
|
|
re ss
|
|
\{\ !\
|
|
ĠA X
|
|
ĠA z
|
|
}}+\ \
|
|
)| ]\
|
|
ĠM U
|
|
st rong
|
|
ĠF E
|
|
_{+ })^{\
|
|
ĠK M
|
|
ĠU niform
|
|
}_{+ }),\
|
|
}_{+ }^{*}\
|
|
})_{\ #
|
|
ĠO PT
|
|
}}}( (\
|
|
}\;\ ,
|
|
an y
|
|
Le v
|
|
37 0
|
|
|=\ |
|
|
|< |\
|
|
^{\# }_{
|
|
}{}{ }]
|
|
AD M
|
|
Ġcap acity
|
|
ĠLea ve
|
|
, ^{\
|
|
4 24
|
|
8 47
|
|
A m
|
|
K Z
|
|
N IP
|
|
Q Y
|
|
T t
|
|
i des
|
|
x C
|
|
Ġ ])\
|
|
}\ }|.\]
|
|
ma sk
|
|
}} }([
|
|
Ġ{ +}
|
|
Ġx t
|
|
}^{* }]_{
|
|
)) )}\]
|
|
Ġi P
|
|
}\| -\|\
|
|
ĠL L
|
|
}& :
|
|
^{-\ |\
|
|
_{* }}_{
|
|
_{* }>
|
|
Ġm d
|
|
})| /
|
|
\[=\ |\
|
|
}\! /_{
|
|
40 2
|
|
40 3
|
|
cccc ccc
|
|
,* )\
|
|
}=[ -\
|
|
\}= \]
|
|
58 6
|
|
)^{+ },
|
|
_{! }^{\
|
|
Ġqu asi
|
|
Ed ges
|
|
! )\
|
|
. }}{\
|
|
6 59
|
|
L b
|
|
O sc
|
|
S l
|
|
S te
|
|
g trap
|
|
Ġ )-(
|
|
Ġ })).\]
|
|
}\ }\|
|
|
ma ss
|
|
da y
|
|
mu lation
|
|
}| [\
|
|
^{* }]\]
|
|
Ġ1 22
|
|
Ġi mage
|
|
\, (-
|
|
Ġt s
|
|
Ġu r
|
|
ĠS q
|
|
ĠT F
|
|
Ġp aper
|
|
ĠP e
|
|
)},\ ;\
|
|
et c
|
|
)}\, ,
|
|
Ġde cay
|
|
Ġ}{\ |
|
|
Ġcon juga
|
|
)})^{ (
|
|
Ġsu rj
|
|
}! }{(
|
|
68 9
|
|
})\; ,\
|
|
ori ze
|
|
ĠPro b
|
|
(. );\
|
|
toch astic
|
|
ĠPoi sson
|
|
gtrap prox
|
|
$ }^{(
|
|
. },
|
|
4 10
|
|
4 22
|
|
5 13
|
|
I AA
|
|
V ir
|
|
\ }}[
|
|
\ }}\\
|
|
] }_{[
|
|
m rk
|
|
p J
|
|
u R
|
|
Ġ lim
|
|
Ġ )),\
|
|
}) }}-\
|
|
}= <
|
|
{( }||
|
|
}}^{ {}^{
|
|
Ġ{ [\
|
|
}^{* ^{\
|
|
}}_{ {}_{
|
|
),\ ;\;\
|
|
Ġd ue
|
|
ĠL B
|
|
{)}\ ,\,\
|
|
ĠA F
|
|
ĠS NR
|
|
_{* }))\
|
|
_{* })\,
|
|
12 22
|
|
12 80
|
|
Ġv anish
|
|
)| },\
|
|
})_{ /
|
|
ĠE G
|
|
}}| {\
|
|
})| ,|\
|
|
}}\| }\
|
|
)=( [
|
|
^{*}(\ {
|
|
64 1
|
|
an ced
|
|
Ġdx ds
|
|
})\|\ |\
|
|
)}\,\ |
|
|
07 0
|
|
)\! ,\
|
|
},\; (
|
|
Ġ{+ }}\
|
|
vi rt
|
|
}}}{{= }}-\
|
|
}}_{+ }(\
|
|
ĠCom ple
|
|
inn er
|
|
Ġcyc lic
|
|
+ ,\
|
|
0 123
|
|
D d
|
|
E U
|
|
E st
|
|
M Y
|
|
Q K
|
|
j ik
|
|
m Y
|
|
v A
|
|
Ġ name
|
|
Ġ }_{\{
|
|
Ġ }}}.\]
|
|
Ġ ``
|
|
\[ :\
|
|
}} }]
|
|
}, ||\
|
|
la ble
|
|
text minus
|
|
}}( [-
|
|
^{* }}[\
|
|
Ġ1 17
|
|
Ġ1 92
|
|
co arse
|
|
}}) }+\|\
|
|
Ġ}\ ,\,\
|
|
)+ _{
|
|
})= {
|
|
Ġd Z
|
|
Ġg d
|
|
ĠG D
|
|
ln ot
|
|
per s
|
|
}/\ !\!/
|
|
}}\| +\
|
|
))^{ *}
|
|
}}^{* },\]
|
|
Ġ10 4
|
|
^{*}_{ [
|
|
Ġ\| {\
|
|
)}) |^{
|
|
56 2
|
|
}|| .\]
|
|
,+ }=\
|
|
)})^{ -\
|
|
)_{+ }}{
|
|
SE P
|
|
})}_{ =
|
|
RS T
|
|
Ġexact ly
|
|
Ġus er
|
|
! +
|
|
) }})_{
|
|
0 98
|
|
F g
|
|
J d
|
|
N w
|
|
Q U
|
|
Z A
|
|
\ }]
|
|
\ })_{
|
|
] })-
|
|
b C
|
|
k V
|
|
v n
|
|
{ +\
|
|
| )}{|\
|
|
Ġ )}_{\
|
|
}) ...\
|
|
ri ft
|
|
^{- }).\]
|
|
set s
|
|
\, :=\,\
|
|
Ġa ngle
|
|
]\ ;,\]
|
|
ul t
|
|
_{+ }&
|
|
Ġh f
|
|
Ġg l
|
|
^{+ })+
|
|
{\{ }[\
|
|
})}{ -
|
|
}))\ |
|
|
}_{+ })}.\]
|
|
}{| (
|
|
^{*}( (\
|
|
}}\| =\
|
|
\[=\ {
|
|
dz dw
|
|
)! .\]
|
|
Ġ| +|
|
|
+|\ {
|
|
45 1
|
|
08 1
|
|
SO C
|
|
)\! )\
|
|
}))}\ |\
|
|
_{< }(
|
|
Ġ{+ }^{
|
|
Ġnu ll
|
|
SW F
|
|
den se
|
|
AS SO
|
|
Ġso urce
|
|
ĠVar iable
|
|
Ġmini mum
|
|
Ġneighbo rhood
|
|
Ġass oci
|
|
) }),(
|
|
+ }-
|
|
+ }-\
|
|
B SO
|
|
C J
|
|
R OM
|
|
\ })}\]
|
|
h N
|
|
j f
|
|
Ġ ),\\
|
|
Ġ triv
|
|
}^{ /
|
|
ra ction
|
|
}{ }^{*}\
|
|
qu o
|
|
^{- })+
|
|
Ġ& \{
|
|
{) },\,
|
|
co mm
|
|
ĠC lass
|
|
Ġ} }).\]
|
|
)+ ((
|
|
)} &-\
|
|
}\,\ {\
|
|
ĠV e
|
|
ĠE d
|
|
}}+ ...+
|
|
... \,
|
|
}}\, =\
|
|
}{( |\
|
|
})| }{(
|
|
Ġin cl
|
|
Ġ| +\
|
|
)})\ |
|
|
}})= {\
|
|
}})= (-
|
|
Ġ&= (-
|
|
58 5
|
|
68 7
|
|
Ġdi rection
|
|
^{** }_{
|
|
PS U
|
|
}}\; ,\
|
|
., }\
|
|
CM on
|
|
sw arrow
|
|
emp erature
|
|
+- +-
|
|
* }.\]
|
|
4 01
|
|
B GL
|
|
E l
|
|
F Z
|
|
Q z
|
|
\ }=-
|
|
] ))=
|
|
c de
|
|
u ge
|
|
x aby
|
|
| }_{\
|
|
| ))^{
|
|
Ġ )\]
|
|
Ġ )<\
|
|
Ġ )})\]
|
|
Ġ ]-\
|
|
Ġ ^{*}\]
|
|
}\ };\
|
|
Ġ& &-\
|
|
wi t
|
|
{) },\,\
|
|
}}) }+\|
|
|
),\ ;(
|
|
_{* }]\
|
|
_{- }:=\
|
|
)| ).\]
|
|
00 13
|
|
ĠM a
|
|
ĠP C
|
|
Ġh h
|
|
}}- [\
|
|
}}| (-\
|
|
ĠU E
|
|
ĠW P
|
|
,- ,+
|
|
Ġ+ }
|
|
Ġ10 6
|
|
en na
|
|
})\,\ |
|
|
}}& (\
|
|
an c
|
|
cd f
|
|
|\,\ |
|
|
}}^{+ }=
|
|
55 7
|
|
yy y
|
|
09 3
|
|
68 5
|
|
97 3
|
|
fe as
|
|
Ġinter se
|
|
Ġconver gence
|
|
dap tive
|
|
B g
|
|
N J
|
|
Q s
|
|
] ^{+}\
|
|
a ij
|
|
k fl
|
|
o x
|
|
s Q
|
|
z D
|
|
à ©
|
|
Ġ }|^{\
|
|
}) )^{*}\]
|
|
}_{ >\
|
|
ta ge
|
|
}_{\ #}\
|
|
}=\ #\{
|
|
sq supset
|
|
Ġ1 21
|
|
Ġ{ {}^{\
|
|
}^{- })+
|
|
}^{- ,+}\
|
|
)) |.\]
|
|
Ġt wist
|
|
)^{\ {
|
|
fo ot
|
|
_{- })-
|
|
ĠI RS
|
|
ĠM R
|
|
Th ere
|
|
}&\ {
|
|
ĠE ff
|
|
ĠR f
|
|
ĠK S
|
|
):=\ #\{
|
|
}\) ]
|
|
)|\ ;\
|
|
^{*}\ {
|
|
)})\ |_{\
|
|
}\; |\
|
|
)* }
|
|
CA T
|
|
}); (\
|
|
Ġmod ule
|
|
tg t
|
|
ZF C
|
|
Get S
|
|
( =\
|
|
) }}}{{=}}
|
|
/ **
|
|
N i
|
|
P et
|
|
U N
|
|
b P
|
|
_{ ]
|
|
\[ :=\
|
|
})\ }}
|
|
})\ }=\{
|
|
^{* }}\\
|
|
}\, :=\,
|
|
\, =
|
|
ca b
|
|
sp l
|
|
ĠL d
|
|
ĠA ll
|
|
<\ ;\
|
|
ĠH W
|
|
12 35
|
|
ĠM P
|
|
}^{+ }\,\
|
|
}^{+ })^{-
|
|
)\, ;\]
|
|
})_{ <
|
|
Ġm icro
|
|
ĠR n
|
|
ĠD B
|
|
ĠF r
|
|
_{+ }^{*}
|
|
Ġw or
|
|
}=( |
|
|
}_{- })
|
|
ik jl
|
|
ip tic
|
|
)\| ,\
|
|
45 2
|
|
up date
|
|
ir d
|
|
Ġ* &\
|
|
80 9
|
|
Ġ{+ }(\
|
|
cyc lic
|
|
Ġtop olog
|
|
bran ch
|
|
* }-\
|
|
. }\;\
|
|
L inear
|
|
N um
|
|
W res
|
|
] }},
|
|
] };\
|
|
i W
|
|
m S
|
|
r F
|
|
r S
|
|
u de
|
|
Ġ }|_{\
|
|
Ġ ):\
|
|
le g
|
|
ta ck
|
|
si te
|
|
)}\ |(
|
|
}| )}\]
|
|
)=\ {\{
|
|
}: \{\
|
|
ĠC ap
|
|
Ġf ol
|
|
}}) ](
|
|
}}) _{*}
|
|
Ġa q
|