193 lines
7.5 KiB
Python
193 lines
7.5 KiB
Python
import os
|
|
import yaml
|
|
import argparse
|
|
import numpy as np
|
|
import glob
|
|
from onnxruntime import InferenceSession
|
|
from tqdm import tqdm
|
|
|
|
from models.det_model.preprocess import Compose
|
|
import cv2
|
|
|
|
|
|
# Global dictionary
|
|
SUPPORT_MODELS = {
|
|
'YOLO', 'PPYOLOE', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet',
|
|
'S2ANet', 'JDE', 'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet',
|
|
'TOOD', 'RetinaNet', 'StrongBaseline', 'STGCN', 'YOLOX', 'HRNet',
|
|
'DETR'
|
|
}
|
|
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
parser.add_argument("--infer_cfg", type=str, help="infer_cfg.yml",
|
|
default="./models/det_model/model/infer_cfg.yml"
|
|
)
|
|
parser.add_argument('--onnx_file', type=str, help="onnx model file path",
|
|
default="./models/det_model/model/rtdetr_r50vd_6x_coco.onnx"
|
|
)
|
|
parser.add_argument("--image_dir", type=str)
|
|
parser.add_argument("--image_file", type=str, default='/data/ljm/TexTeller/src/Tr00_0001015-page02.jpg')
|
|
parser.add_argument("--imgsave_dir", type=str,
|
|
default="."
|
|
)
|
|
|
|
def get_test_images(infer_dir, infer_img):
|
|
"""
|
|
Get image path list in TEST mode
|
|
"""
|
|
assert infer_img is not None or infer_dir is not None, \
|
|
"--image_file or --image_dir should be set"
|
|
assert infer_img is None or os.path.isfile(infer_img), \
|
|
"{} is not a file".format(infer_img)
|
|
assert infer_dir is None or os.path.isdir(infer_dir), \
|
|
"{} is not a directory".format(infer_dir)
|
|
|
|
# infer_img has a higher priority
|
|
if infer_img and os.path.isfile(infer_img):
|
|
return [infer_img]
|
|
|
|
images = set()
|
|
infer_dir = os.path.abspath(infer_dir)
|
|
assert os.path.isdir(infer_dir), \
|
|
"infer_dir {} is not a directory".format(infer_dir)
|
|
exts = ['jpg', 'jpeg', 'png', 'bmp']
|
|
exts += [ext.upper() for ext in exts]
|
|
for ext in exts:
|
|
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
|
|
images = list(images)
|
|
|
|
assert len(images) > 0, "no image found in {}".format(infer_dir)
|
|
print("Found {} inference images in total.".format(len(images)))
|
|
|
|
return images
|
|
|
|
|
|
class PredictConfig(object):
|
|
"""set config of preprocess, postprocess and visualize
|
|
Args:
|
|
infer_config (str): path of infer_cfg.yml
|
|
"""
|
|
|
|
def __init__(self, infer_config):
|
|
# parsing Yaml config for Preprocess
|
|
with open(infer_config) as f:
|
|
yml_conf = yaml.safe_load(f)
|
|
self.check_model(yml_conf)
|
|
self.arch = yml_conf['arch']
|
|
self.preprocess_infos = yml_conf['Preprocess']
|
|
self.min_subgraph_size = yml_conf['min_subgraph_size']
|
|
self.label_list = yml_conf['label_list']
|
|
self.use_dynamic_shape = yml_conf['use_dynamic_shape']
|
|
self.draw_threshold = yml_conf.get("draw_threshold", 0.5)
|
|
self.mask = yml_conf.get("mask", False)
|
|
self.tracker = yml_conf.get("tracker", None)
|
|
self.nms = yml_conf.get("NMS", None)
|
|
self.fpn_stride = yml_conf.get("fpn_stride", None)
|
|
|
|
color_pool = [(0, 255, 0), (255, 0, 0), (0, 0, 255), (255, 255, 0), (0, 255, 255)]
|
|
self.colors = {label: color_pool[i % len(color_pool)] for i, label in enumerate(self.label_list)}
|
|
|
|
if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
|
|
print(
|
|
'The RCNN export model is used for ONNX and it only supports batch_size = 1'
|
|
)
|
|
self.print_config()
|
|
|
|
def check_model(self, yml_conf):
|
|
"""
|
|
Raises:
|
|
ValueError: loaded model not in supported model type
|
|
"""
|
|
for support_model in SUPPORT_MODELS:
|
|
if support_model in yml_conf['arch']:
|
|
return True
|
|
raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
|
|
'arch'], SUPPORT_MODELS))
|
|
|
|
def print_config(self):
|
|
print('----------- Model Configuration -----------')
|
|
print('%s: %s' % ('Model Arch', self.arch))
|
|
print('%s: ' % ('Transform Order'))
|
|
for op_info in self.preprocess_infos:
|
|
print('--%s: %s' % ('transform op', op_info['type']))
|
|
print('--------------------------------------------')
|
|
|
|
|
|
def draw_bbox(image, outputs, infer_config):
|
|
for output in outputs:
|
|
cls_id, score, xmin, ymin, xmax, ymax = output
|
|
if score > infer_config.draw_threshold:
|
|
label = infer_config.label_list[int(cls_id)]
|
|
color = infer_config.colors[label]
|
|
cv2.rectangle(image, (int(xmin), int(ymin)), (int(xmax), int(ymax)), color, 2)
|
|
cv2.putText(image, "{}: {:.2f}".format(label, score),
|
|
(int(xmin), int(ymin - 5)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
|
return image
|
|
|
|
|
|
def predict_image(infer_config, predictor, img_list):
|
|
# load preprocess transforms
|
|
transforms = Compose(infer_config.preprocess_infos)
|
|
errImgList = []
|
|
|
|
# Check and create subimg_save_dir if not exist
|
|
subimg_save_dir = os.path.join(FLAGS.imgsave_dir, 'subimages')
|
|
os.makedirs(subimg_save_dir, exist_ok=True)
|
|
|
|
# predict image
|
|
for img_path in tqdm(img_list):
|
|
img = cv2.imread(img_path)
|
|
if img is None:
|
|
print(f"Warning: Could not read image {img_path}. Skipping...")
|
|
errImgList.append(img_path)
|
|
continue
|
|
|
|
inputs = transforms(img_path)
|
|
inputs_name = [var.name for var in predictor.get_inputs()]
|
|
inputs = {k: inputs[k][None, ] for k in inputs_name}
|
|
|
|
outputs = predictor.run(output_names=None, input_feed=inputs)
|
|
|
|
print("ONNXRuntime predict: ")
|
|
if infer_config.arch in ["HRNet"]:
|
|
print(np.array(outputs[0]))
|
|
else:
|
|
bboxes = np.array(outputs[0])
|
|
for bbox in bboxes:
|
|
if bbox[0] > -1 and bbox[1] > infer_config.draw_threshold:
|
|
print(f"{int(bbox[0])} {bbox[1]} "
|
|
f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}")
|
|
|
|
# Save the subimages (crop from the original image)
|
|
subimg_counter = 1
|
|
for output in np.array(outputs[0]):
|
|
cls_id, score, xmin, ymin, xmax, ymax = output
|
|
if score > infer_config.draw_threshold:
|
|
label = infer_config.label_list[int(cls_id)]
|
|
subimg = img[int(ymin):int(ymax), int(xmin):int(xmax)]
|
|
subimg_filename = f"{os.path.splitext(os.path.basename(img_path))[0]}_{label}_{xmin:.2f}_{ymin:.2f}_{xmax:.2f}_{ymax:.2f}.jpg"
|
|
subimg_path = os.path.join(subimg_save_dir, subimg_filename)
|
|
cv2.imwrite(subimg_path, subimg)
|
|
subimg_counter += 1
|
|
|
|
# Draw bounding boxes and save the image with bounding boxes
|
|
img_with_bbox = draw_bbox(img, np.array(outputs[0]), infer_config)
|
|
output_dir = FLAGS.imgsave_dir
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
output_file = os.path.join(output_dir, "output_" + os.path.basename(img_path))
|
|
cv2.imwrite(output_file, img_with_bbox)
|
|
|
|
print("ErrorImgs:")
|
|
print(errImgList)
|
|
|
|
if __name__ == '__main__':
|
|
FLAGS = parser.parse_args()
|
|
# load image list
|
|
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
|
|
# load predictor
|
|
predictor = InferenceSession(FLAGS.onnx_file)
|
|
# load infer config
|
|
infer_config = PredictConfig(FLAGS.infer_cfg)
|
|
|
|
predict_image(infer_config, predictor, img_list)
|