init repo
This commit is contained in:
119
app/services/layout_detector.py
Normal file
119
app/services/layout_detector.py
Normal file
@@ -0,0 +1,119 @@
|
||||
"""DocLayout-YOLO wrapper for document layout detection."""
|
||||
|
||||
import numpy as np
|
||||
|
||||
from app.schemas.image import LayoutInfo, LayoutRegion
|
||||
|
||||
|
||||
class LayoutDetector:
|
||||
"""Wrapper for DocLayout-YOLO model."""
|
||||
|
||||
# Class names from DocLayout-YOLO
|
||||
CLASS_NAMES = {
|
||||
0: "title",
|
||||
1: "plain_text",
|
||||
2: "abandon",
|
||||
3: "figure",
|
||||
4: "figure_caption",
|
||||
5: "table",
|
||||
6: "table_caption",
|
||||
7: "table_footnote",
|
||||
8: "isolate_formula",
|
||||
9: "formula_caption",
|
||||
}
|
||||
|
||||
# Classes considered as plain text
|
||||
PLAIN_TEXT_CLASSES = {"title", "plain_text", "figure_caption", "table_caption", "table_footnote"}
|
||||
|
||||
# Classes considered as formula
|
||||
FORMULA_CLASSES = {"isolate_formula", "formula_caption"}
|
||||
|
||||
def __init__(self, model_path: str, confidence_threshold: float = 0.2):
|
||||
"""Initialize the layout detector.
|
||||
|
||||
Args:
|
||||
model_path: Path to the DocLayout-YOLO model weights.
|
||||
confidence_threshold: Minimum confidence for detections.
|
||||
"""
|
||||
self.model_path = model_path
|
||||
self.confidence_threshold = confidence_threshold
|
||||
self.model = None
|
||||
|
||||
def load_model(self) -> None:
|
||||
"""Load the DocLayout-YOLO model.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If model cannot be loaded.
|
||||
"""
|
||||
try:
|
||||
from doclayout_yolo import YOLOv10
|
||||
|
||||
self.model = YOLOv10(self.model_path)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to load DocLayout-YOLO model: {e}") from e
|
||||
|
||||
def detect(self, image: np.ndarray, image_size: int = 1024) -> LayoutInfo:
|
||||
"""Detect document layout regions.
|
||||
|
||||
Args:
|
||||
image: Input image as numpy array in BGR format.
|
||||
image_size: Image size for prediction.
|
||||
|
||||
Returns:
|
||||
LayoutInfo with detected regions.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If model not loaded.
|
||||
"""
|
||||
if self.model is None:
|
||||
raise RuntimeError("Model not loaded. Call load_model() first.")
|
||||
|
||||
# Run prediction
|
||||
results = self.model.predict(
|
||||
image,
|
||||
imgsz=image_size,
|
||||
conf=self.confidence_threshold,
|
||||
device="cuda:0",
|
||||
)
|
||||
|
||||
regions: list[LayoutRegion] = []
|
||||
has_plain_text = False
|
||||
has_formula = False
|
||||
|
||||
if results and len(results) > 0:
|
||||
result = results[0]
|
||||
if result.boxes is not None:
|
||||
for box in result.boxes:
|
||||
cls_id = int(box.cls[0].item())
|
||||
confidence = float(box.conf[0].item())
|
||||
bbox = box.xyxy[0].tolist()
|
||||
|
||||
class_name = self.CLASS_NAMES.get(cls_id, f"unknown_{cls_id}")
|
||||
|
||||
# Map to simplified type
|
||||
if class_name in self.PLAIN_TEXT_CLASSES:
|
||||
region_type = "text"
|
||||
has_plain_text = True
|
||||
elif class_name in self.FORMULA_CLASSES:
|
||||
region_type = "formula"
|
||||
has_formula = True
|
||||
elif class_name in {"figure"}:
|
||||
region_type = "figure"
|
||||
elif class_name in {"table"}:
|
||||
region_type = "table"
|
||||
else:
|
||||
region_type = class_name
|
||||
|
||||
regions.append(
|
||||
LayoutRegion(
|
||||
type=region_type,
|
||||
bbox=bbox,
|
||||
confidence=confidence,
|
||||
)
|
||||
)
|
||||
|
||||
return LayoutInfo(
|
||||
regions=regions,
|
||||
has_plain_text=has_plain_text,
|
||||
has_formula=has_formula,
|
||||
)
|
||||
Reference in New Issue
Block a user