init repo

This commit is contained in:
liuyuanchuang
2025-12-29 17:34:58 +08:00
commit 874fd383cc
36 changed files with 2641 additions and 0 deletions

View File

@@ -0,0 +1,107 @@
## Context
This is the initial implementation of the DocProcesser service. The system integrates multiple external models and services:
- DocLayout-YOLO for document layout analysis
- PaddleOCR-VL with PP-DocLayoutV2 for text and formula recognition (deployed via vLLM)
- markdown_2_docx for document conversion
Target deployment: Ubuntu machine with RTX 5080 GPU (16GB VRAM), Python 3.11.0.
## Goals / Non-Goals
**Goals:**
- Clean FastAPI project structure following best practices
- Image preprocessing with OpenCV (30% padding)
- Layout-aware OCR routing using DocLayout-YOLO
- Text and formula recognition via PaddleOCR-VL
- Markdown to DOCX conversion
- GPU-enabled Docker deployment
**Non-Goals:**
- Authentication/authorization (can be added later)
- Rate limiting
- Persistent storage
- Training or fine-tuning models
## Decisions
### Project Structure
Follow FastAPI best practices with modular organization:
```
app/
├── api/
│ └── v1/
│ ├── endpoints/
│ │ ├── image.py # Image OCR endpoint
│ │ └── convert.py # Markdown to DOCX endpoint
│ └── router.py
├── core/
│ └── config.py # Settings and environment config
|—— model/
| |—— DocLayout
| |—— PP-DocLayout
├── services/
│ ├── image_processor.py # OpenCV preprocessing
│ ├── layout_detector.py # DocLayout-YOLO wrapper
│ ├── ocr_service.py # PaddleOCR-VL client
│ └── docx_converter.py # markdown_2_docx wrapper
├── schemas/
│ ├── image.py # Request/response models for image OCR
│ └── convert.py # Request/response models for conversion
└── main.py # FastAPI app initialization
```
**Rationale:** Separation of concerns between API layer, business logic (services), and data models (schemas).
### Image Preprocessing
- Use OpenCV `cv2.copyMakeBorder()` to add 30% whitespace padding
- Padding color: white `[255, 255, 255]`
- This matches DocLayout-YOLO's demo.py pattern
### Layout Detection Flow
1. DocLayout-YOLO detects layout regions (plain text, formulas, tables, figures)
2. Exsit plain text, routes to PaddleOCR-VL with PP-DocLayoutV2, othewise routes to PaddleOCR-VL with prompt
3. PaddleOCR-VL combined PP-DocLayoutV2 handles mixed content recognition internally, PaddleOCR-VL combined prompt handles formula
### External Service Integration
- PaddleOCR-VL: Connect to vLLM server at configurable URL (default: `http://localhost:8080/v1`)
- DocLayout-YOLO: Load model from pre-downloaded path (not downloaded in container)
### Docker Strategy
- Base image: NVIDIA CUDA with Python 3.11
- Pre-install OpenCV dependencies (`libgl1-mesa-glx`, `libglib2.0-0`)
- Mount model directory for DocLayout-YOLO weights
- Expose port 8053
- Use Uvicorn with multiple workers
## Risks / Trade-offs
| Risk | Mitigation |
| --------------------------------- | ------------------------------------------------------------------ |
| PaddleOCR-VL service unavailable | Health check endpoint, retry logic with exponential backoff |
| Large image memory consumption | Configure max image size, resize before processing |
| DocLayout-YOLO model loading time | Load model once at startup, keep in memory |
| GPU memory contention | DocLayout-YOLO uses GPU; PaddleOCR-VL runs on separate vLLM server |
## Configuration
Environment variables:
- `PADDLEOCR_VL_URL`: vLLM server URL (default: `http://localhost:8000/v1`)
- `DOCLAYOUT_MODEL_PATH`: Path to DocLayout-YOLO weights
- `PP_DOCLAYOUT_MODEL_DIR`: Path to PP-DocLayoutV3 model directory
- `MAX_IMAGE_SIZE_MB`: Maximum upload size (default: 10)
## Open Questions
- Should we add async queue for large batch processing? (Defer to future change)
- Do we need WebSocket for progress updates? (Defer to future change)

View File

@@ -0,0 +1,31 @@
# Change: Add Document Processing API
## Why
DocProcesser needs a FastAPI backend to accept images (via URL or base64) and convert them to LaTeX/Markdown/MathML, plus a markdown-to-DOCX conversion endpoint. This establishes the core functionality of the project.
## What Changes
- **BREAKING**: Initial project setup (new FastAPI project structure)
- Add image-to-OCR API endpoint (`POST /doc_process/v1/image/ocr`)
- Accept `image_url` or `image_base64` input
- Preprocess with OpenCV (30% whitespace padding)
- Use DocLayout-YOLO for layout detection
- Route to PaddleOCR-VL (with PP-DocLayoutV2) for text/formula recognition
- Exists `plain_text` element, use PP-DocLayoutV2 to recognize the image as mixed_recognition , otherwise directly PaddleOCR-VL API combined with prompt Formula Recognition as formula_recognition.
- Refrence markdown_2_docx code convert the markdown to latex, mathml for mixed_recognition, convert the latex to markdown, mathml for formula_recognition
- Return LaTeX, Markdown, and MathML outputs
- Add markdown-to-DOCX API endpoint (`POST /doc_process/v1/convert/docx`)
- Accept markdown content
- Refrence markdown_2_docx library for conversion, the address is http://github.com/YogeLiu/markdown_2_docxdd.
- Return DOCX file
- Add Dockerfile for GPU-enabled deployment (RTX 5080, port 8053)
## Impact
- Affected specs: `image-ocr`, `markdown-docx`
- Affected code: New project structure under `app/`
- External dependencies:
- DocLayout-YOLO (pre-downloaded model, not fetched in container)
- PaddleOCR-VL with vLLM backend (external service at localhost:8080)
- markdown_2_docx library

View File

@@ -0,0 +1,137 @@
## ADDED Requirements
### Requirement: Image Input Acceptance
The system SHALL accept images via `POST /api/v1/image/ocr` endpoint with either:
- `image_url`: A publicly accessible URL to the image
- `image_base64`: Base64-encoded image data
The system SHALL return an error if neither input is provided or if both are provided simultaneously.
#### Scenario: Image URL provided
- **WHEN** a valid `image_url` is provided in the request body
- **THEN** the system SHALL download the image and process it
- **AND** return OCR results in the response
#### Scenario: Base64 image provided
- **WHEN** a valid `image_base64` string is provided in the request body
- **THEN** the system SHALL decode the image and process it
- **AND** return OCR results in the response
#### Scenario: Invalid input
- **WHEN** neither `image_url` nor `image_base64` is provided
- **THEN** the system SHALL return HTTP 422 with validation error
---
### Requirement: Image Preprocessing with Padding
The system SHALL preprocess all input images by adding 30% whitespace padding around the image borders using OpenCV.
The padding calculation: `padding = int(max(height, width) * 0.15)` on each side (totaling 30% expansion).
The padding color SHALL be white (`RGB: 255, 255, 255`).
#### Scenario: Image padding applied
- **WHEN** an image of dimensions 1000x800 pixels is received
- **THEN** the system SHALL add approximately 150 pixels of white padding on each side
- **AND** the resulting image dimensions SHALL be approximately 1300x1100 pixels
---
### Requirement: Layout Detection with DocLayout-YOLO
The system SHALL use DocLayout-YOLO model to detect document layout regions including:
- Plain text blocks
- Formulas/equations
- Tables
- Figures
The model SHALL be loaded from a pre-configured local path (not downloaded at runtime).
#### Scenario: Layout detection success
- **WHEN** a padded image is passed to DocLayout-YOLO
- **THEN** the system SHALL return detected regions with bounding boxes and class labels
- **AND** confidence scores for each detection
#### Scenario: Model not available
- **WHEN** the DocLayout-YOLO model file is not found at the configured path
- **THEN** the system SHALL fail startup with a clear error message
---
### Requirement: OCR Processing with PaddleOCR-VL
The system SHALL send images to PaddleOCR-VL (via vLLM backend) for text and formula recognition.
PaddleOCR-VL SHALL be configured with PP-DocLayoutV2 for document layout understanding.
The system SHALL handle both plain text and formula/math content.
#### Scenario: Plain text recognition
- **WHEN** DocLayout-YOLO detects plain text regions
- **THEN** the system SHALL send the image to PaddleOCR-VL
- **AND** return recognized text content
#### Scenario: Formula recognition
- **WHEN** DocLayout-YOLO detects formula/equation regions
- **THEN** the system SHALL send the image to PaddleOCR-VL
- **AND** return formula content in LaTeX format
#### Scenario: Mixed content handling
- **WHEN** DocLayout-YOLO detects both text and formula regions
- **THEN** the system SHALL process all regions via PaddleOCR-VL with PP-DocLayoutV3
- **AND** return combined results preserving document structure
#### Scenario: PaddleOCR-VL service unavailable
- **WHEN** the PaddleOCR-VL vLLM server is unreachable
- **THEN** the system SHALL return HTTP 503 with service unavailable error
---
### Requirement: Multi-Format Output
The system SHALL return OCR results in multiple formats:
- `latex`: LaTeX representation of the content
- `markdown`: Markdown representation of the content
- `mathml`: MathML representation for mathematical content
#### Scenario: Successful OCR response
- **WHEN** image processing completes successfully
- **THEN** the response SHALL include:
- `latex`: string containing LaTeX output
- `markdown`: string containing Markdown output
- `mathml`: string containing MathML output (empty string if no math detected)
- **AND** HTTP status code SHALL be 200
#### Scenario: Response structure
- **WHEN** the OCR endpoint returns successfully
- **THEN** the response body SHALL be JSON with structure:
```json
{
"latex": "...",
"markdown": "...",
"mathml": "...",
"layout_info": {
"regions": [
{"type": "text|formula|table|figure", "bbox": [x1, y1, x2, y2], "confidence": 0.95}
]
}
}
```

View File

@@ -0,0 +1,93 @@
## ADDED Requirements
### Requirement: Markdown Input Acceptance
The system SHALL accept markdown content via `POST /api/v1/convert/docx` endpoint.
The request body SHALL contain:
- `markdown`: string containing the markdown content to convert
#### Scenario: Valid markdown provided
- **WHEN** valid markdown content is provided in the request body
- **THEN** the system SHALL process and convert it to DOCX format
#### Scenario: Empty markdown
- **WHEN** an empty `markdown` string is provided
- **THEN** the system SHALL return HTTP 422 with validation error
---
### Requirement: DOCX Conversion
The system SHALL convert markdown content to DOCX format using the markdown_2_docx library.
The conversion SHALL preserve:
- Headings (H1-H6)
- Paragraphs
- Bold and italic formatting
- Lists (ordered and unordered)
- Code blocks
- Tables
- Images (if embedded as base64 or accessible URLs)
#### Scenario: Basic markdown conversion
- **WHEN** markdown with headings, paragraphs, and formatting is provided
- **THEN** the system SHALL generate a valid DOCX file
- **AND** the DOCX SHALL preserve the document structure
#### Scenario: Complex markdown with tables
- **WHEN** markdown containing tables is provided
- **THEN** the system SHALL convert tables to Word table format
- **AND** preserve table structure and content
#### Scenario: Markdown with math formulas
- **WHEN** markdown containing LaTeX math expressions is provided
- **THEN** the system SHALL convert math to OMML (Office Math Markup Language) format
- **AND** render correctly in Microsoft Word
---
### Requirement: DOCX File Response
The system SHALL return the generated DOCX file as a binary download.
The response SHALL include:
- Content-Type: `application/vnd.openxmlformats-officedocument.wordprocessingml.document`
- Content-Disposition: `attachment; filename="output.docx"`
#### Scenario: Successful conversion response
- **WHEN** markdown conversion completes successfully
- **THEN** the response SHALL be the DOCX file binary
- **AND** HTTP status code SHALL be 200
- **AND** appropriate headers for file download SHALL be set
#### Scenario: Custom filename
- **WHEN** an optional `filename` parameter is provided in the request
- **THEN** the Content-Disposition header SHALL use the provided filename
- **AND** append `.docx` extension if not present
---
### Requirement: Error Handling
The system SHALL provide clear error responses for conversion failures.
#### Scenario: Conversion failure
- **WHEN** markdown_2_docx fails to convert the content
- **THEN** the system SHALL return HTTP 500 with error details
- **AND** the error message SHALL describe the failure reason
#### Scenario: Malformed markdown
- **WHEN** severely malformed markdown is provided
- **THEN** the system SHALL attempt best-effort conversion
- **AND** log a warning about potential formatting issues

View File

@@ -0,0 +1,34 @@
## 1. Project Scaffolding
- [x] 1.1 Create FastAPI project structure (`app/`, `api/`, `core/`, `services/`, `schemas/`)
- [x] 1.2 Use uv handle with dependencies (fastapi, uvicorn, opencv-python, python-multipart, pydantic, httpx)
- [x] 1.3 Create `app/main.py` with FastAPI app initialization
- [x] 1.4 Create `app/core/config.py` with Pydantic Settings
## 2. Image OCR API
- [x] 2.1 Create request/response schemas in `app/schemas/image.py`
- [x] 2.2 Implement image preprocessing service with OpenCV padding (`app/services/image_processor.py`)
- [x] 2.3 Implement DocLayout-YOLO wrapper (`app/services/layout_detector.py`)
- [x] 2.4 Implement PaddleOCR-VL client (`app/services/ocr_service.py`)
- [x] 2.5 Create image OCR endpoint (`app/api/v1/endpoints/image.py`)
- [x] 2.6 Wire up router and test endpoint
## 3. Markdown to DOCX API
- [x] 3.1 Create request/response schemas in `app/schemas/convert.py`
- [x] 3.2 Integrate markdown_2_docx library (`app/services/docx_converter.py`)
- [x] 3.3 Create conversion endpoint (`app/api/v1/endpoints/convert.py`)
- [x] 3.4 Wire up router and test endpoint
## 4. Deployment
- [x] 4.1 Create Dockerfile with CUDA base image for RTX 5080
- [x] 4.2 Create docker-compose.yml (optional, for local development)
- [x] 4.3 Document deployment steps in README
## 5. Validation
- [ ] 5.1 Test image OCR endpoint with sample images
- [ ] 5.2 Test markdown to DOCX conversion
- [ ] 5.3 Verify Docker build and GPU access