init repo

This commit is contained in:
liuyuanchuang
2025-12-29 17:34:58 +08:00
commit 874fd383cc
36 changed files with 2641 additions and 0 deletions

View File

@@ -0,0 +1,23 @@
---
name: /openspec-apply
id: openspec-apply
category: OpenSpec
description: Implement an approved OpenSpec change and keep tasks in sync.
---
<!-- OPENSPEC:START -->
**Guardrails**
- Favor straightforward, minimal implementations first and add complexity only when it is requested or clearly required.
- Keep changes tightly scoped to the requested outcome.
- Refer to `openspec/AGENTS.md` (located inside the `openspec/` directory—run `ls openspec` or `openspec update` if you don't see it) if you need additional OpenSpec conventions or clarifications.
**Steps**
Track these steps as TODOs and complete them one by one.
1. Read `changes/<id>/proposal.md`, `design.md` (if present), and `tasks.md` to confirm scope and acceptance criteria.
2. Work through tasks sequentially, keeping edits minimal and focused on the requested change.
3. Confirm completion before updating statuses—make sure every item in `tasks.md` is finished.
4. Update the checklist after all work is done so each task is marked `- [x]` and reflects reality.
5. Reference `openspec list` or `openspec show <item>` when additional context is required.
**Reference**
- Use `openspec show <id> --json --deltas-only` if you need additional context from the proposal while implementing.
<!-- OPENSPEC:END -->

View File

@@ -0,0 +1,27 @@
---
name: /openspec-archive
id: openspec-archive
category: OpenSpec
description: Archive a deployed OpenSpec change and update specs.
---
<!-- OPENSPEC:START -->
**Guardrails**
- Favor straightforward, minimal implementations first and add complexity only when it is requested or clearly required.
- Keep changes tightly scoped to the requested outcome.
- Refer to `openspec/AGENTS.md` (located inside the `openspec/` directory—run `ls openspec` or `openspec update` if you don't see it) if you need additional OpenSpec conventions or clarifications.
**Steps**
1. Determine the change ID to archive:
- If this prompt already includes a specific change ID (for example inside a `<ChangeId>` block populated by slash-command arguments), use that value after trimming whitespace.
- If the conversation references a change loosely (for example by title or summary), run `openspec list` to surface likely IDs, share the relevant candidates, and confirm which one the user intends.
- Otherwise, review the conversation, run `openspec list`, and ask the user which change to archive; wait for a confirmed change ID before proceeding.
- If you still cannot identify a single change ID, stop and tell the user you cannot archive anything yet.
2. Validate the change ID by running `openspec list` (or `openspec show <id>`) and stop if the change is missing, already archived, or otherwise not ready to archive.
3. Run `openspec archive <id> --yes` so the CLI moves the change and applies spec updates without prompts (use `--skip-specs` only for tooling-only work).
4. Review the command output to confirm the target specs were updated and the change landed in `changes/archive/`.
5. Validate with `openspec validate --strict` and inspect with `openspec show <id>` if anything looks off.
**Reference**
- Use `openspec list` to confirm change IDs before archiving.
- Inspect refreshed specs with `openspec list --specs` and address any validation issues before handing off.
<!-- OPENSPEC:END -->

View File

@@ -0,0 +1,28 @@
---
name: /openspec-proposal
id: openspec-proposal
category: OpenSpec
description: Scaffold a new OpenSpec change and validate strictly.
---
<!-- OPENSPEC:START -->
**Guardrails**
- Favor straightforward, minimal implementations first and add complexity only when it is requested or clearly required.
- Keep changes tightly scoped to the requested outcome.
- Refer to `openspec/AGENTS.md` (located inside the `openspec/` directory—run `ls openspec` or `openspec update` if you don't see it) if you need additional OpenSpec conventions or clarifications.
- Identify any vague or ambiguous details and ask the necessary follow-up questions before editing files.
- Do not write any code during the proposal stage. Only create design documents (proposal.md, tasks.md, design.md, and spec deltas). Implementation happens in the apply stage after approval.
**Steps**
1. Review `openspec/project.md`, run `openspec list` and `openspec list --specs`, and inspect related code or docs (e.g., via `rg`/`ls`) to ground the proposal in current behaviour; note any gaps that require clarification.
2. Choose a unique verb-led `change-id` and scaffold `proposal.md`, `tasks.md`, and `design.md` (when needed) under `openspec/changes/<id>/`.
3. Map the change into concrete capabilities or requirements, breaking multi-scope efforts into distinct spec deltas with clear relationships and sequencing.
4. Capture architectural reasoning in `design.md` when the solution spans multiple systems, introduces new patterns, or demands trade-off discussion before committing to specs.
5. Draft spec deltas in `changes/<id>/specs/<capability>/spec.md` (one folder per capability) using `## ADDED|MODIFIED|REMOVED Requirements` with at least one `#### Scenario:` per requirement and cross-reference related capabilities when relevant.
6. Draft `tasks.md` as an ordered list of small, verifiable work items that deliver user-visible progress, include validation (tests, tooling), and highlight dependencies or parallelizable work.
7. Validate with `openspec validate <id> --strict` and resolve every issue before sharing the proposal.
**Reference**
- Use `openspec show <id> --json --deltas-only` or `openspec show <spec> --type spec` to inspect details when validation fails.
- Search existing requirements with `rg -n "Requirement:|Scenario:" openspec/specs` before writing new ones.
- Explore the codebase with `rg <keyword>`, `ls`, or direct file reads so proposals align with current implementation realities.
<!-- OPENSPEC:END -->

73
.gitignore vendored Normal file
View File

@@ -0,0 +1,73 @@
# Python
__pycache__/
*.py[cod]
*$py.class
*.so
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
# Virtual environments
.venv/
venv/
ENV/
env/
# IDE
.idea/
.vscode/
*.swp
*.swo
*~
# Environment
.env
.env.local
.env.*.local
# Models (large files - download separately)
models/
*.pt
*.onnx
*.pdmodel
*.pdiparams
# Logs
*.log
logs/
# Temporary files
tmp/
temp/
*.tmp
# OS
.DS_Store
Thumbs.db
# Test
.pytest_cache/
.coverage
htmlcov/
.tox/
# Docker
.docker/
# uv
uv.lock
model/*

18
AGENTS.md Normal file
View File

@@ -0,0 +1,18 @@
<!-- OPENSPEC:START -->
# OpenSpec Instructions
These instructions are for AI assistants working in this project.
Always open `@/openspec/AGENTS.md` when the request:
- Mentions planning or proposals (words like proposal, spec, change, plan)
- Introduces new capabilities, breaking changes, architecture shifts, or big performance/security work
- Sounds ambiguous and you need the authoritative spec before coding
Use `@/openspec/AGENTS.md` to learn:
- How to create and apply change proposals
- Spec format and conventions
- Project structure and guidelines
Keep this managed block so 'openspec update' can refresh the instructions.
<!-- OPENSPEC:END -->

62
Dockerfile Normal file
View File

@@ -0,0 +1,62 @@
# DocProcesser Dockerfile
# Optimized for RTX 5080 GPU deployment
# Use NVIDIA CUDA base image with Python 3.11
FROM nvidia/cuda:12.8.0-runtime-ubuntu24.04
# Set environment variables
ENV PYTHONUNBUFFERED=1 \
PYTHONDONTWRITEBYTECODE=1 \
PIP_NO_CACHE_DIR=1 \
PIP_DISABLE_PIP_VERSION_CHECK=1
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.11 \
python3.11-venv \
python3.11-dev \
python3-pip \
libgl1-mesa-glx \
libglib2.0-0 \
libsm6 \
libxext6 \
libxrender-dev \
libgomp1 \
curl \
&& rm -rf /var/lib/apt/lists/* \
&& ln -sf /usr/bin/python3.11 /usr/bin/python \
&& ln -sf /usr/bin/python3.11 /usr/bin/python3
# Install uv for fast package management
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
ENV PATH="/root/.local/bin:$PATH"
# Copy dependency files first for better caching
COPY pyproject.toml ./
# Create virtual environment and install dependencies
RUN uv venv /app/.venv
ENV PATH="/app/.venv/bin:$PATH"
ENV VIRTUAL_ENV="/app/.venv"
RUN uv pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -e .
# Copy application code
COPY app/ ./app/
# Create model directories (models should be mounted at runtime)
RUN mkdir -p /app/app/model/DocLayout /app/app/model/PP-DocLayout
# Expose port
EXPOSE 8053
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
CMD curl -f http://localhost:8053/health || exit 1
# Run the application
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "8053", "--workers", "1"]

199
README.md Normal file
View File

@@ -0,0 +1,199 @@
# DocProcesser
Document processing API built with FastAPI. Converts images to LaTeX/Markdown/MathML and Markdown to DOCX.
## Features
- **Image OCR API** (`POST /doc_process/v1/image/ocr`)
- Accept images via URL or base64
- Automatic layout detection using DocLayout-YOLO
- Text and formula recognition via PaddleOCR-VL
- Output in LaTeX, Markdown, and MathML formats
- **Markdown to DOCX API** (`POST /doc_process/v1/convert/docx`)
- Convert markdown content to Word documents
- Preserve formatting, tables, and code blocks
## Prerequisites
- Python 3.11+
- NVIDIA GPU with CUDA support (RTX 5080 recommended)
- PaddleOCR-VL service running via vLLM (default: `http://localhost:8080/v1`)
- Pre-downloaded models:
- DocLayout-YOLO
- PP-DocLayoutV2
## Quick Start
### 1. Install Dependencies
Using [uv](https://github.com/astral-sh/uv):
```bash
# Install uv if not already installed
curl -LsSf https://astral.sh/uv/install.sh | sh
# Create virtual environment and install dependencies
uv venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
uv pip install -e .
```
### 2. Download Models
Download the required models and place them in the `models/` directory:
```bash
mkdir -p models/DocLayout models/PP-DocLayout
# DocLayout-YOLO (from HuggingFace)
# https://huggingface.co/juliozhao/DocLayout-YOLO-DocStructBench
# Place the .pt file in models/DocLayout/
# PP-DocLayoutV2 (from PaddlePaddle)
# Place the model files in models/PP-DocLayout/
```
### 3. Configure Environment
Create a `.env` file:
```bash
# PaddleOCR-VL vLLM server URL
PADDLEOCR_VL_URL=http://localhost:8080/v1
# Model paths
DOCLAYOUT_MODEL_PATH=models/DocLayout/doclayout_yolo_docstructbench_imgsz1024.pt
PP_DOCLAYOUT_MODEL_DIR=models/PP-DocLayout
# Server settings
HOST=0.0.0.0
PORT=8053
```
### 4. Run the Server
```bash
uvicorn app.main:app --host 0.0.0.0 --port 8053
```
## Docker Deployment
### Build and Run with GPU
```bash
# Build the image
docker build -t doc-processer .
# Run with GPU support
docker run --gpus all -p 8053:8053 \
-v ./models/DocLayout:/app/models/DocLayout:ro \
-v ./models/PP-DocLayout:/app/models/PP-DocLayout:ro \
-e PADDLEOCR_VL_URL=http://host.docker.internal:8080/v1 \
doc-processer
```
### Using Docker Compose
```bash
# Start the service with GPU
docker-compose up -d doc-processer
# Or without GPU (CPU mode)
docker-compose --profile cpu up -d doc-processer-cpu
```
## API Usage
### Image OCR
```bash
# Using image URL
curl -X POST http://localhost:8053/doc_process/v1/image/ocr \
-H "Content-Type: application/json" \
-d '{"image_url": "https://example.com/document.png"}'
# Using base64 image
curl -X POST http://localhost:8053/doc_process/v1/image/ocr \
-H "Content-Type: application/json" \
-d '{"image_base64": "iVBORw0KGgo..."}'
```
Response:
```json
{
"latex": "\\section{Title}...",
"markdown": "# Title\n...",
"mathml": "<math>...</math>",
"layout_info": {
"regions": [
{"type": "text", "bbox": [10, 20, 100, 50], "confidence": 0.95}
],
"has_plain_text": true,
"has_formula": false
},
"recognition_mode": "mixed_recognition"
}
```
### Markdown to DOCX
```bash
curl -X POST http://localhost:8053/doc_process/v1/convert/docx \
-H "Content-Type: application/json" \
-d '{"markdown": "# Hello World\n\nThis is a test.", "filename": "output"}' \
--output output.docx
```
## Project Structure
```
doc_processer/
├── app/
│ ├── api/v1/
│ │ ├── endpoints/
│ │ │ ├── image.py # Image OCR endpoint
│ │ │ └── convert.py # Markdown to DOCX endpoint
│ │ └── router.py
│ ├── core/
│ │ ├── config.py # Settings
│ │ └── dependencies.py # DI providers
│ ├── services/
│ │ ├── image_processor.py # OpenCV preprocessing
│ │ ├── layout_detector.py # DocLayout-YOLO
│ │ ├── ocr_service.py # PaddleOCR-VL client
│ │ └── docx_converter.py # Markdown to DOCX
│ ├── schemas/
│ │ ├── image.py
│ │ └── convert.py
│ └── main.py
├── models/ # Pre-downloaded models (git-ignored)
├── Dockerfile
├── docker-compose.yml
├── pyproject.toml
└── README.md
```
## Processing Pipeline
### Image OCR Flow
1. **Input**: Accept `image_url` or `image_base64`
2. **Preprocessing**: Add 30% whitespace padding using OpenCV
3. **Layout Detection**: DocLayout-YOLO detects regions (text, formula, table, figure)
4. **Recognition**:
- If plain text detected → PP-DocLayoutV2 for mixed content recognition
- Otherwise → PaddleOCR-VL with formula prompt
5. **Output Conversion**: Generate LaTeX, Markdown, and MathML
## Hardware Requirements
- **Minimum**: 8GB GPU VRAM
- **Recommended**: RTX 5080 16GB or equivalent
- **CPU**: 4+ cores
- **RAM**: 16GB+
## License
MIT

0
app/__init__.py Normal file
View File

0
app/api/__init__.py Normal file
View File

0
app/api/v1/__init__.py Normal file
View File

View File

View File

@@ -0,0 +1,37 @@
"""Markdown to DOCX conversion endpoint."""
from fastapi import APIRouter, Depends, HTTPException
from fastapi.responses import Response
from app.core.dependencies import get_docx_converter
from app.schemas.convert import MarkdownToDocxRequest
from app.services.docx_converter import DocxConverter
router = APIRouter()
@router.post("/docx")
async def convert_markdown_to_docx(
request: MarkdownToDocxRequest,
converter: DocxConverter = Depends(get_docx_converter),
) -> Response:
"""Convert markdown content to DOCX file.
Returns the generated DOCX file as a binary download.
"""
try:
docx_bytes = converter.convert(request.markdown)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Conversion failed: {e}")
# Determine filename
filename = request.filename or "output"
if not filename.endswith(".docx"):
filename = f"{filename}.docx"
return Response(
content=docx_bytes,
media_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document",
headers={"Content-Disposition": f'attachment; filename="{filename}"'},
)

View File

@@ -0,0 +1,59 @@
"""Image OCR endpoint."""
from fastapi import APIRouter, Depends, HTTPException
from app.core.dependencies import get_image_processor, get_layout_detector, get_ocr_service
from app.schemas.image import ImageOCRRequest, ImageOCRResponse
from app.services.image_processor import ImageProcessor
from app.services.layout_detector import LayoutDetector
from app.services.ocr_service import OCRService
router = APIRouter()
@router.post("/ocr", response_model=ImageOCRResponse)
async def process_image_ocr(
request: ImageOCRRequest,
image_processor: ImageProcessor = Depends(get_image_processor),
layout_detector: LayoutDetector = Depends(get_layout_detector),
ocr_service: OCRService = Depends(get_ocr_service),
) -> ImageOCRResponse:
"""Process an image and extract content as LaTeX, Markdown, and MathML.
The processing pipeline:
1. Load and preprocess image (add 30% whitespace padding)
2. Detect layout using DocLayout-YOLO
3. Based on layout:
- If plain text exists: use PP-DocLayoutV2 for mixed recognition
- Otherwise: use PaddleOCR-VL with formula prompt
4. Convert output to LaTeX, Markdown, and MathML formats
"""
try:
# 1. Load and preprocess image
image = image_processor.preprocess(
image_url=request.image_url,
image_base64=request.image_base64,
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
try:
# 2. Detect layout
layout_info = layout_detector.detect(image)
except RuntimeError as e:
raise HTTPException(status_code=500, detail=f"Layout detection failed: {e}")
try:
# 3. Perform OCR based on layout
ocr_result = ocr_service.recognize(image, layout_info)
except RuntimeError as e:
raise HTTPException(status_code=503, detail=str(e))
# 4. Return response
return ImageOCRResponse(
latex=ocr_result.get("latex", ""),
markdown=ocr_result.get("markdown", ""),
mathml=ocr_result.get("mathml", ""),
layout_info=layout_info,
recognition_mode=ocr_result.get("recognition_mode", ""),
)

13
app/api/v1/router.py Normal file
View File

@@ -0,0 +1,13 @@
"""API v1 router combining all endpoints."""
from fastapi import APIRouter
from app.api.v1.endpoints import convert, image
api_router = APIRouter()
# Include image processing endpoints
api_router.include_router(image.router, prefix="/image", tags=["Image OCR"])
# Include conversion endpoints
api_router.include_router(convert.router, prefix="/convert", tags=["Conversion"])

0
app/core/__init__.py Normal file
View File

52
app/core/config.py Normal file
View File

@@ -0,0 +1,52 @@
"""Application configuration using Pydantic Settings."""
from functools import lru_cache
from pathlib import Path
from pydantic_settings import BaseSettings, SettingsConfigDict
class Settings(BaseSettings):
"""Application settings loaded from environment variables."""
model_config = SettingsConfigDict(
env_file=".env",
env_file_encoding="utf-8",
case_sensitive=False,
)
# API Settings
api_prefix: str = "/doc_process/v1"
debug: bool = False
# PaddleOCR-VL Settings
paddleocr_vl_url: str = "http://localhost:8080/v1"
# Model Paths
doclayout_model_path: str = "app/model/DocLayout"
pp_doclayout_model_dir: str = "app/model/PP-DocLayout"
# Image Processing
max_image_size_mb: int = 10
image_padding_ratio: float = 0.15 # 15% on each side = 30% total expansion
# Server Settings
host: str = "0.0.0.0"
port: int = 8053
@property
def doclayout_model_file(self) -> Path:
"""Get the DocLayout model file path."""
return Path(self.doclayout_model_path)
@property
def pp_doclayout_dir(self) -> Path:
"""Get the PP-DocLayout model directory path."""
return Path(self.pp_doclayout_model_dir)
@lru_cache
def get_settings() -> Settings:
"""Get cached settings instance."""
return Settings()

42
app/core/dependencies.py Normal file
View File

@@ -0,0 +1,42 @@
"""Application dependencies."""
from app.services.image_processor import ImageProcessor
from app.services.layout_detector import LayoutDetector
from app.services.ocr_service import OCRService
from app.services.docx_converter import DocxConverter
# Global instances (initialized on startup)
_layout_detector: LayoutDetector | None = None
def init_layout_detector(model_path: str) -> None:
"""Initialize the global layout detector.
Called during application startup.
"""
global _layout_detector
_layout_detector = LayoutDetector(model_path=model_path)
_layout_detector.load_model()
def get_layout_detector() -> LayoutDetector:
"""Get the global layout detector instance."""
if _layout_detector is None:
raise RuntimeError("Layout detector not initialized. Call init_layout_detector() first.")
return _layout_detector
def get_image_processor() -> ImageProcessor:
"""Get an image processor instance."""
return ImageProcessor()
def get_ocr_service() -> OCRService:
"""Get an OCR service instance."""
return OCRService()
def get_docx_converter() -> DocxConverter:
"""Get a DOCX converter instance."""
return DocxConverter()

39
app/main.py Normal file
View File

@@ -0,0 +1,39 @@
"""FastAPI application entry point."""
from contextlib import asynccontextmanager
from fastapi import FastAPI
from app.api.v1.router import api_router
from app.core.config import get_settings
from app.core.dependencies import init_layout_detector
settings = get_settings()
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan handler for startup/shutdown."""
# Startup: Load models
init_layout_detector(model_path=settings.doclayout_model_path)
yield
# Shutdown: Cleanup happens automatically
app = FastAPI(
title="DocProcesser API",
description="Document processing API - Image to LaTeX/Markdown/MathML and Markdown to DOCX",
version="0.1.0",
lifespan=lifespan,
)
# Include API router
app.include_router(api_router, prefix=settings.api_prefix)
@app.get("/health")
async def health_check():
"""Health check endpoint."""
return {"status": "healthy"}

0
app/model/__init__.py Normal file
View File

0
app/schemas/__init__.py Normal file
View File

19
app/schemas/convert.py Normal file
View File

@@ -0,0 +1,19 @@
"""Request and response schemas for markdown to DOCX conversion endpoint."""
from pydantic import BaseModel, Field, field_validator
class MarkdownToDocxRequest(BaseModel):
"""Request body for markdown to DOCX conversion endpoint."""
markdown: str = Field(..., description="Markdown content to convert")
filename: str | None = Field(None, description="Optional output filename (without extension)")
@field_validator("markdown")
@classmethod
def validate_markdown_not_empty(cls, v: str) -> str:
"""Validate that markdown content is not empty."""
if not v or not v.strip():
raise ValueError("Markdown content cannot be empty")
return v

48
app/schemas/image.py Normal file
View File

@@ -0,0 +1,48 @@
"""Request and response schemas for image OCR endpoint."""
from pydantic import BaseModel, Field, model_validator
class LayoutRegion(BaseModel):
"""A detected layout region in the document."""
type: str = Field(..., description="Region type: text, formula, table, figure")
bbox: list[float] = Field(..., description="Bounding box [x1, y1, x2, y2]")
confidence: float = Field(..., description="Detection confidence score")
class LayoutInfo(BaseModel):
"""Layout detection information."""
regions: list[LayoutRegion] = Field(default_factory=list)
has_plain_text: bool = Field(False, description="Whether plain text was detected")
has_formula: bool = Field(False, description="Whether formulas were detected")
class ImageOCRRequest(BaseModel):
"""Request body for image OCR endpoint."""
image_url: str | None = Field(None, description="URL to fetch the image from")
image_base64: str | None = Field(None, description="Base64-encoded image data")
@model_validator(mode="after")
def validate_input(self):
"""Validate that exactly one of image_url or image_base64 is provided."""
if self.image_url is None and self.image_base64 is None:
raise ValueError("Either image_url or image_base64 must be provided")
if self.image_url is not None and self.image_base64 is not None:
raise ValueError("Only one of image_url or image_base64 should be provided")
return self
class ImageOCRResponse(BaseModel):
"""Response body for image OCR endpoint."""
latex: str = Field("", description="LaTeX representation of the content")
markdown: str = Field("", description="Markdown representation of the content")
mathml: str = Field("", description="MathML representation (empty if no math detected)")
layout_info: LayoutInfo = Field(default_factory=LayoutInfo)
recognition_mode: str = Field(
"", description="Recognition mode used: mixed_recognition or formula_recognition"
)

0
app/services/__init__.py Normal file
View File

View File

@@ -0,0 +1,335 @@
"""Markdown to DOCX conversion service.
Reference implementation based on https://github.com/YogeLiu/markdown_2_docx
"""
import io
import re
from dataclasses import dataclass
from docx import Document
from docx.enum.text import WD_ALIGN_PARAGRAPH
from docx.oxml import OxmlElement
from docx.oxml.ns import qn
from docx.shared import Inches, Pt
@dataclass
class MarkdownElement:
"""Parsed markdown element."""
type: str # heading, paragraph, list_item, code_block, table, math
content: str
level: int = 0 # For headings and lists
language: str = "" # For code blocks
class DocxConverter:
"""Converts markdown content to DOCX format."""
def __init__(self):
"""Initialize the converter."""
self.heading_pattern = re.compile(r"^(#{1,6})\s+(.+)$")
self.list_pattern = re.compile(r"^(\s*)[-*+]\s+(.+)$")
self.ordered_list_pattern = re.compile(r"^(\s*)\d+\.\s+(.+)$")
self.code_block_pattern = re.compile(r"^```(\w*)$")
self.inline_code_pattern = re.compile(r"`([^`]+)`")
self.bold_pattern = re.compile(r"\*\*([^*]+)\*\*")
self.italic_pattern = re.compile(r"\*([^*]+)\*")
self.math_block_pattern = re.compile(r"\$\$(.+?)\$\$", re.DOTALL)
self.inline_math_pattern = re.compile(r"\$([^$]+)\$")
def convert(self, markdown: str) -> bytes:
"""Convert markdown content to DOCX.
Args:
markdown: Markdown content to convert.
Returns:
DOCX file as bytes.
"""
doc = Document()
elements = self._parse_markdown(markdown)
for element in elements:
self._add_element_to_doc(doc, element)
# Save to bytes
buffer = io.BytesIO()
doc.save(buffer)
buffer.seek(0)
return buffer.getvalue()
def _parse_markdown(self, markdown: str) -> list[MarkdownElement]:
"""Parse markdown into elements.
Args:
markdown: Markdown content.
Returns:
List of parsed elements.
"""
elements: list[MarkdownElement] = []
lines = markdown.split("\n")
i = 0
in_code_block = False
code_content = []
code_language = ""
while i < len(lines):
line = lines[i]
# Code block handling
code_match = self.code_block_pattern.match(line)
if code_match:
if in_code_block:
elements.append(
MarkdownElement(
type="code_block",
content="\n".join(code_content),
language=code_language,
)
)
code_content = []
in_code_block = False
else:
in_code_block = True
code_language = code_match.group(1)
i += 1
continue
if in_code_block:
code_content.append(line)
i += 1
continue
# Math block ($$...$$)
if line.strip().startswith("$$"):
math_content = []
if line.strip() == "$$":
i += 1
while i < len(lines) and lines[i].strip() != "$$":
math_content.append(lines[i])
i += 1
else:
# Single line $$...$$ or start
content = line.strip()[2:]
if content.endswith("$$"):
math_content.append(content[:-2])
else:
math_content.append(content)
i += 1
while i < len(lines):
if lines[i].strip().endswith("$$"):
math_content.append(lines[i].strip()[:-2])
break
math_content.append(lines[i])
i += 1
elements.append(
MarkdownElement(type="math", content="\n".join(math_content))
)
i += 1
continue
# Heading
heading_match = self.heading_pattern.match(line)
if heading_match:
level = len(heading_match.group(1))
content = heading_match.group(2)
elements.append(
MarkdownElement(type="heading", content=content, level=level)
)
i += 1
continue
# Unordered list
list_match = self.list_pattern.match(line)
if list_match:
indent = len(list_match.group(1))
content = list_match.group(2)
elements.append(
MarkdownElement(type="list_item", content=content, level=indent // 2)
)
i += 1
continue
# Ordered list
ordered_match = self.ordered_list_pattern.match(line)
if ordered_match:
indent = len(ordered_match.group(1))
content = ordered_match.group(2)
elements.append(
MarkdownElement(
type="ordered_list_item", content=content, level=indent // 2
)
)
i += 1
continue
# Table (simple detection)
if "|" in line and i + 1 < len(lines) and "---" in lines[i + 1]:
table_lines = [line]
i += 1
while i < len(lines) and "|" in lines[i]:
table_lines.append(lines[i])
i += 1
elements.append(
MarkdownElement(type="table", content="\n".join(table_lines))
)
continue
# Regular paragraph
if line.strip():
elements.append(MarkdownElement(type="paragraph", content=line))
i += 1
return elements
def _add_element_to_doc(self, doc: Document, element: MarkdownElement) -> None:
"""Add a markdown element to the document.
Args:
doc: Word document.
element: Parsed markdown element.
"""
if element.type == "heading":
self._add_heading(doc, element.content, element.level)
elif element.type == "paragraph":
self._add_paragraph(doc, element.content)
elif element.type == "list_item":
self._add_list_item(doc, element.content, element.level, ordered=False)
elif element.type == "ordered_list_item":
self._add_list_item(doc, element.content, element.level, ordered=True)
elif element.type == "code_block":
self._add_code_block(doc, element.content)
elif element.type == "table":
self._add_table(doc, element.content)
elif element.type == "math":
self._add_math(doc, element.content)
def _add_heading(self, doc: Document, content: str, level: int) -> None:
"""Add a heading to the document."""
# Map markdown levels to Word heading styles
heading_level = min(level, 9) # Word supports up to Heading 9
doc.add_heading(content, level=heading_level)
def _add_paragraph(self, doc: Document, content: str) -> None:
"""Add a paragraph with inline formatting."""
para = doc.add_paragraph()
self._add_formatted_text(para, content)
def _add_formatted_text(self, para, content: str) -> None:
"""Add text with inline formatting (bold, italic, code)."""
# Simple approach: process inline patterns
remaining = content
while remaining:
# Find next formatting marker
bold_match = self.bold_pattern.search(remaining)
italic_match = self.italic_pattern.search(remaining)
code_match = self.inline_code_pattern.search(remaining)
math_match = self.inline_math_pattern.search(remaining)
matches = [
(bold_match, "bold"),
(italic_match, "italic"),
(code_match, "code"),
(math_match, "math"),
]
matches = [(m, t) for m, t in matches if m]
if not matches:
para.add_run(remaining)
break
# Find earliest match
earliest = min(matches, key=lambda x: x[0].start())
match, match_type = earliest
# Add text before match
if match.start() > 0:
para.add_run(remaining[: match.start()])
# Add formatted text
run = para.add_run(match.group(1))
if match_type == "bold":
run.bold = True
elif match_type == "italic":
run.italic = True
elif match_type == "code":
run.font.name = "Courier New"
run.font.size = Pt(10)
elif match_type == "math":
run.italic = True
remaining = remaining[match.end() :]
def _add_list_item(
self, doc: Document, content: str, level: int, ordered: bool
) -> None:
"""Add a list item."""
para = doc.add_paragraph(style="List Bullet" if not ordered else "List Number")
para.paragraph_format.left_indent = Inches(0.25 * level)
self._add_formatted_text(para, content)
def _add_code_block(self, doc: Document, content: str) -> None:
"""Add a code block."""
para = doc.add_paragraph()
para.paragraph_format.left_indent = Inches(0.5)
run = para.add_run(content)
run.font.name = "Courier New"
run.font.size = Pt(9)
# Add shading
shading = OxmlElement("w:shd")
shading.set(qn("w:val"), "clear")
shading.set(qn("w:fill"), "F0F0F0")
para._p.get_or_add_pPr().append(shading)
def _add_table(self, doc: Document, content: str) -> None:
"""Add a table from markdown table format."""
lines = [l.strip() for l in content.split("\n") if l.strip()]
if len(lines) < 2:
return
# Parse header
header = [c.strip() for c in lines[0].split("|") if c.strip()]
# Skip separator line
data_lines = lines[2:] if len(lines) > 2 else []
# Create table
table = doc.add_table(rows=1, cols=len(header))
table.style = "Table Grid"
# Add header
header_cells = table.rows[0].cells
for i, text in enumerate(header):
header_cells[i].text = text
header_cells[i].paragraphs[0].runs[0].bold = True
# Add data rows
for line in data_lines:
cells = [c.strip() for c in line.split("|") if c.strip()]
row_cells = table.add_row().cells
for i, text in enumerate(cells):
if i < len(row_cells):
row_cells[i].text = text
def _add_math(self, doc: Document, content: str) -> None:
"""Add a math block.
For proper OMML rendering, this would need more complex conversion.
Currently renders as italic text with the LaTeX source.
"""
para = doc.add_paragraph()
para.alignment = WD_ALIGN_PARAGRAPH.CENTER
run = para.add_run(content)
run.italic = True
run.font.name = "Cambria Math"
run.font.size = Pt(12)

View File

@@ -0,0 +1,139 @@
"""Image preprocessing service using OpenCV."""
import base64
import io
from urllib.request import urlopen
import cv2
import numpy as np
from PIL import Image
from app.core.config import get_settings
settings = get_settings()
class ImageProcessor:
"""Service for image preprocessing operations."""
def __init__(self, padding_ratio: float | None = None):
"""Initialize with padding ratio.
Args:
padding_ratio: Ratio for padding on each side (default from settings).
0.15 means 15% padding on each side = 30% total expansion.
"""
self.padding_ratio = padding_ratio or settings.image_padding_ratio
def load_image_from_url(self, url: str) -> np.ndarray:
"""Load image from URL.
Args:
url: Image URL to fetch.
Returns:
Image as numpy array in BGR format.
Raises:
ValueError: If image cannot be loaded from URL.
"""
try:
with urlopen(url, timeout=30) as response:
image_data = response.read()
image = Image.open(io.BytesIO(image_data))
return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
except Exception as e:
raise ValueError(f"Failed to load image from URL: {e}") from e
def load_image_from_base64(self, base64_str: str) -> np.ndarray:
"""Load image from base64 string.
Args:
base64_str: Base64-encoded image data.
Returns:
Image as numpy array in BGR format.
Raises:
ValueError: If image cannot be decoded.
"""
try:
# Handle data URL format
if "," in base64_str:
base64_str = base64_str.split(",", 1)[1]
image_data = base64.b64decode(base64_str)
image = Image.open(io.BytesIO(image_data))
return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
except Exception as e:
raise ValueError(f"Failed to decode base64 image: {e}") from e
def add_padding(self, image: np.ndarray) -> np.ndarray:
"""Add whitespace padding around the image.
Adds padding equal to padding_ratio * max(height, width) on each side.
This expands the image by approximately 30% total (15% on each side).
Args:
image: Input image as numpy array in BGR format.
Returns:
Padded image as numpy array.
"""
height, width = image.shape[:2]
padding = int(max(height, width) * self.padding_ratio)
# Add white padding on all sides
padded_image = cv2.copyMakeBorder(
image,
top=padding,
bottom=padding,
left=padding,
right=padding,
borderType=cv2.BORDER_CONSTANT,
value=[255, 255, 255], # White
)
return padded_image
def preprocess(self, image_url: str | None, image_base64: str | None) -> np.ndarray:
"""Load and preprocess image with padding.
Args:
image_url: URL to fetch image from (optional).
image_base64: Base64-encoded image (optional).
Returns:
Preprocessed image with padding.
Raises:
ValueError: If neither input is provided or loading fails.
"""
if image_url:
image = self.load_image_from_url(image_url)
elif image_base64:
image = self.load_image_from_base64(image_base64)
else:
raise ValueError("Either image_url or image_base64 must be provided")
return self.add_padding(image)
def image_to_base64(self, image: np.ndarray, format: str = "PNG") -> str:
"""Convert numpy image to base64 string.
Args:
image: Image as numpy array in BGR format.
format: Output format (PNG, JPEG).
Returns:
Base64-encoded image string.
"""
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image_rgb)
buffer = io.BytesIO()
pil_image.save(buffer, format=format)
buffer.seek(0)
return base64.b64encode(buffer.getvalue()).decode("utf-8")

View File

@@ -0,0 +1,119 @@
"""DocLayout-YOLO wrapper for document layout detection."""
import numpy as np
from app.schemas.image import LayoutInfo, LayoutRegion
class LayoutDetector:
"""Wrapper for DocLayout-YOLO model."""
# Class names from DocLayout-YOLO
CLASS_NAMES = {
0: "title",
1: "plain_text",
2: "abandon",
3: "figure",
4: "figure_caption",
5: "table",
6: "table_caption",
7: "table_footnote",
8: "isolate_formula",
9: "formula_caption",
}
# Classes considered as plain text
PLAIN_TEXT_CLASSES = {"title", "plain_text", "figure_caption", "table_caption", "table_footnote"}
# Classes considered as formula
FORMULA_CLASSES = {"isolate_formula", "formula_caption"}
def __init__(self, model_path: str, confidence_threshold: float = 0.2):
"""Initialize the layout detector.
Args:
model_path: Path to the DocLayout-YOLO model weights.
confidence_threshold: Minimum confidence for detections.
"""
self.model_path = model_path
self.confidence_threshold = confidence_threshold
self.model = None
def load_model(self) -> None:
"""Load the DocLayout-YOLO model.
Raises:
RuntimeError: If model cannot be loaded.
"""
try:
from doclayout_yolo import YOLOv10
self.model = YOLOv10(self.model_path)
except Exception as e:
raise RuntimeError(f"Failed to load DocLayout-YOLO model: {e}") from e
def detect(self, image: np.ndarray, image_size: int = 1024) -> LayoutInfo:
"""Detect document layout regions.
Args:
image: Input image as numpy array in BGR format.
image_size: Image size for prediction.
Returns:
LayoutInfo with detected regions.
Raises:
RuntimeError: If model not loaded.
"""
if self.model is None:
raise RuntimeError("Model not loaded. Call load_model() first.")
# Run prediction
results = self.model.predict(
image,
imgsz=image_size,
conf=self.confidence_threshold,
device="cuda:0",
)
regions: list[LayoutRegion] = []
has_plain_text = False
has_formula = False
if results and len(results) > 0:
result = results[0]
if result.boxes is not None:
for box in result.boxes:
cls_id = int(box.cls[0].item())
confidence = float(box.conf[0].item())
bbox = box.xyxy[0].tolist()
class_name = self.CLASS_NAMES.get(cls_id, f"unknown_{cls_id}")
# Map to simplified type
if class_name in self.PLAIN_TEXT_CLASSES:
region_type = "text"
has_plain_text = True
elif class_name in self.FORMULA_CLASSES:
region_type = "formula"
has_formula = True
elif class_name in {"figure"}:
region_type = "figure"
elif class_name in {"table"}:
region_type = "table"
else:
region_type = class_name
regions.append(
LayoutRegion(
type=region_type,
bbox=bbox,
confidence=confidence,
)
)
return LayoutInfo(
regions=regions,
has_plain_text=has_plain_text,
has_formula=has_formula,
)

303
app/services/ocr_service.py Normal file
View File

@@ -0,0 +1,303 @@
"""PaddleOCR-VL client service for text and formula recognition."""
import io
import tempfile
from pathlib import Path
import cv2
import numpy as np
from app.core.config import get_settings
from app.schemas.image import LayoutInfo
settings = get_settings()
class OCRService:
"""Service for OCR using PaddleOCR-VL."""
FORMULA_PROMPT = "Please recognize the mathematical formula in this image and output in LaTeX format."
def __init__(
self,
vl_server_url: str | None = None,
pp_doclayout_model_dir: str | None = None,
):
"""Initialize OCR service.
Args:
vl_server_url: URL of the vLLM server for PaddleOCR-VL.
pp_doclayout_model_dir: Path to PP-DocLayoutV2 model directory.
"""
self.vl_server_url = vl_server_url or settings.paddleocr_vl_url
self.pp_doclayout_model_dir = pp_doclayout_model_dir or settings.pp_doclayout_model_dir
self._pipeline = None
def _get_pipeline(self):
"""Get or create PaddleOCR-VL pipeline.
Returns:
PaddleOCRVL pipeline instance.
"""
if self._pipeline is None:
from paddleocr import PaddleOCRVL
self._pipeline = PaddleOCRVL(
vl_rec_backend="vllm-server",
vl_rec_server_url=self.vl_server_url,
layout_detection_model_name="PP-DocLayoutV2",
layout_detection_model_dir=self.pp_doclayout_model_dir,
)
return self._pipeline
def _save_temp_image(self, image: np.ndarray) -> str:
"""Save image to a temporary file.
Args:
image: Image as numpy array in BGR format.
Returns:
Path to temporary file.
"""
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as f:
cv2.imwrite(f.name, image)
return f.name
def recognize_mixed(self, image: np.ndarray) -> dict:
"""Recognize mixed content (text + formulas) using PP-DocLayoutV2.
This mode uses PaddleOCR-VL with PP-DocLayoutV2 for document-aware
recognition of mixed content.
Args:
image: Input image as numpy array in BGR format.
Returns:
Dict with 'markdown', 'latex', 'mathml' keys.
"""
try:
pipeline = self._get_pipeline()
temp_path = self._save_temp_image(image)
try:
results = list(pipeline.predict(temp_path))
markdown_content = ""
for result in results:
# PaddleOCR-VL results can be saved to markdown
md_buffer = io.StringIO()
result.save_to_markdown(save_path=md_buffer)
markdown_content += md_buffer.getvalue()
# Convert markdown to other formats
latex = self._markdown_to_latex(markdown_content)
mathml = self._extract_mathml(markdown_content)
return {
"markdown": markdown_content,
"latex": latex,
"mathml": mathml,
}
finally:
Path(temp_path).unlink(missing_ok=True)
except Exception as e:
raise RuntimeError(f"Mixed recognition failed: {e}") from e
def recognize_formula(self, image: np.ndarray) -> dict:
"""Recognize formula/math content using PaddleOCR-VL with prompt.
This mode uses PaddleOCR-VL directly with a formula recognition prompt.
Args:
image: Input image as numpy array in BGR format.
Returns:
Dict with 'latex', 'markdown', 'mathml' keys.
"""
try:
import httpx
temp_path = self._save_temp_image(image)
try:
# Use vLLM API directly for formula recognition
import base64
with open(temp_path, "rb") as f:
image_base64 = base64.b64encode(f.read()).decode("utf-8")
# Call vLLM server with formula prompt
response = httpx.post(
f"{self.vl_server_url}/chat/completions",
json={
"model": "paddleocr-vl",
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": self.FORMULA_PROMPT},
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{image_base64}"},
},
],
}
],
"max_tokens": 1024,
},
timeout=60.0,
)
response.raise_for_status()
result = response.json()
latex = result["choices"][0]["message"]["content"].strip()
# Convert latex to other formats
markdown = self._latex_to_markdown(latex)
mathml = self._latex_to_mathml(latex)
return {
"latex": latex,
"markdown": markdown,
"mathml": mathml,
}
finally:
Path(temp_path).unlink(missing_ok=True)
except httpx.HTTPStatusError as e:
raise RuntimeError(f"Formula recognition failed: HTTP {e.response.status_code}") from e
except Exception as e:
raise RuntimeError(f"Formula recognition failed: {e}") from e
def recognize(self, image: np.ndarray, layout_info: LayoutInfo) -> dict:
"""Recognize content based on layout detection results.
Args:
image: Input image as numpy array in BGR format.
layout_info: Layout detection results.
Returns:
Dict with recognition results including mode used.
"""
# Decision logic:
# - If plain text exists -> use mixed_recognition (PP-DocLayoutV2)
# - Otherwise -> use formula_recognition (VL with prompt)
if layout_info.has_plain_text:
result = self.recognize_mixed(image)
result["recognition_mode"] = "mixed_recognition"
else:
result = self.recognize_formula(image)
result["recognition_mode"] = "formula_recognition"
return result
def _markdown_to_latex(self, markdown: str) -> str:
"""Convert markdown to LaTeX.
Simple conversion - wraps content in LaTeX document structure.
Args:
markdown: Markdown content.
Returns:
LaTeX representation.
"""
# Basic conversion: preserve math blocks, convert structure
lines = []
in_code_block = False
for line in markdown.split("\n"):
if line.startswith("```"):
in_code_block = not in_code_block
if in_code_block:
lines.append("\\begin{verbatim}")
else:
lines.append("\\end{verbatim}")
elif in_code_block:
lines.append(line)
elif line.startswith("# "):
lines.append(f"\\section{{{line[2:]}}}")
elif line.startswith("## "):
lines.append(f"\\subsection{{{line[3:]}}}")
elif line.startswith("### "):
lines.append(f"\\subsubsection{{{line[4:]}}}")
elif line.startswith("- "):
lines.append(f"\\item {line[2:]}")
elif line.startswith("$$"):
lines.append(line.replace("$$", "\\[").replace("$$", "\\]"))
elif "$" in line:
# Keep inline math as-is
lines.append(line)
else:
lines.append(line)
return "\n".join(lines)
def _latex_to_markdown(self, latex: str) -> str:
"""Convert LaTeX to markdown.
Args:
latex: LaTeX content.
Returns:
Markdown representation.
"""
# Wrap LaTeX in markdown math block
if latex.strip():
return f"$$\n{latex}\n$$"
return ""
def _latex_to_mathml(self, latex: str) -> str:
"""Convert LaTeX to MathML.
Args:
latex: LaTeX content.
Returns:
MathML representation.
"""
# Basic LaTeX to MathML conversion
# For production, consider using latex2mathml library
if not latex.strip():
return ""
try:
# Try to use latex2mathml if available
from latex2mathml.converter import convert
return convert(latex)
except ImportError:
# Fallback: wrap in basic MathML structure
return f'<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>{latex}</mtext></math>'
except Exception:
return f'<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>{latex}</mtext></math>'
def _extract_mathml(self, markdown: str) -> str:
"""Extract and convert math from markdown to MathML.
Args:
markdown: Markdown content.
Returns:
MathML for any math content found.
"""
import re
# Find all math blocks
math_blocks = re.findall(r"\$\$(.*?)\$\$", markdown, re.DOTALL)
inline_math = re.findall(r"\$([^$]+)\$", markdown)
all_math = math_blocks + inline_math
if not all_math:
return ""
# Convert each to MathML and combine
mathml_parts = []
for latex in all_math:
mathml = self._latex_to_mathml(latex.strip())
if mathml:
mathml_parts.append(mathml)
return "\n".join(mathml_parts)

53
docker-compose.yml Normal file
View File

@@ -0,0 +1,53 @@
version: "3.8"
services:
doc-processer:
build:
context: .
dockerfile: Dockerfile
container_name: doc-processer
ports:
- "8053:8053"
environment:
- PADDLEOCR_VL_URL=http://host.docker.internal:8080/v1
- DOCLAYOUT_MODEL_PATH=/app/models/DocLayout/doclayout_yolo_docstructbench_imgsz1024.pt
- PP_DOCLAYOUT_MODEL_DIR=/app/models/PP-DocLayout
- MAX_IMAGE_SIZE_MB=10
volumes:
# Mount pre-downloaded models (adjust paths as needed)
- ./models/DocLayout:/app/models/DocLayout:ro
- ./models/PP-DocLayout:/app/models/PP-DocLayout:ro
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
restart: unless-stopped
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8053/health"]
interval: 30s
timeout: 10s
retries: 3
start_period: 10s
# Optional: Local development without GPU
doc-processer-cpu:
build:
context: .
dockerfile: Dockerfile
container_name: doc-processer-cpu
ports:
- "8054:8053"
environment:
- PADDLEOCR_VL_URL=http://host.docker.internal:8080/v1
- DOCLAYOUT_MODEL_PATH=/app/models/DocLayout/doclayout_yolo_docstructbench_imgsz1024.pt
- PP_DOCLAYOUT_MODEL_DIR=/app/models/PP-DocLayout
volumes:
- ./models/DocLayout:/app/models/DocLayout:ro
- ./models/PP-DocLayout:/app/models/PP-DocLayout:ro
profiles:
- cpu
restart: unless-stopped

456
openspec/AGENTS.md Normal file
View File

@@ -0,0 +1,456 @@
# OpenSpec Instructions
Instructions for AI coding assistants using OpenSpec for spec-driven development.
## TL;DR Quick Checklist
- Search existing work: `openspec spec list --long`, `openspec list` (use `rg` only for full-text search)
- Decide scope: new capability vs modify existing capability
- Pick a unique `change-id`: kebab-case, verb-led (`add-`, `update-`, `remove-`, `refactor-`)
- Scaffold: `proposal.md`, `tasks.md`, `design.md` (only if needed), and delta specs per affected capability
- Write deltas: use `## ADDED|MODIFIED|REMOVED|RENAMED Requirements`; include at least one `#### Scenario:` per requirement
- Validate: `openspec validate [change-id] --strict` and fix issues
- Request approval: Do not start implementation until proposal is approved
## Three-Stage Workflow
### Stage 1: Creating Changes
Create proposal when you need to:
- Add features or functionality
- Make breaking changes (API, schema)
- Change architecture or patterns
- Optimize performance (changes behavior)
- Update security patterns
Triggers (examples):
- "Help me create a change proposal"
- "Help me plan a change"
- "Help me create a proposal"
- "I want to create a spec proposal"
- "I want to create a spec"
Loose matching guidance:
- Contains one of: `proposal`, `change`, `spec`
- With one of: `create`, `plan`, `make`, `start`, `help`
Skip proposal for:
- Bug fixes (restore intended behavior)
- Typos, formatting, comments
- Dependency updates (non-breaking)
- Configuration changes
- Tests for existing behavior
**Workflow**
1. Review `openspec/project.md`, `openspec list`, and `openspec list --specs` to understand current context.
2. Choose a unique verb-led `change-id` and scaffold `proposal.md`, `tasks.md`, optional `design.md`, and spec deltas under `openspec/changes/<id>/`.
3. Draft spec deltas using `## ADDED|MODIFIED|REMOVED Requirements` with at least one `#### Scenario:` per requirement.
4. Run `openspec validate <id> --strict` and resolve any issues before sharing the proposal.
### Stage 2: Implementing Changes
Track these steps as TODOs and complete them one by one.
1. **Read proposal.md** - Understand what's being built
2. **Read design.md** (if exists) - Review technical decisions
3. **Read tasks.md** - Get implementation checklist
4. **Implement tasks sequentially** - Complete in order
5. **Confirm completion** - Ensure every item in `tasks.md` is finished before updating statuses
6. **Update checklist** - After all work is done, set every task to `- [x]` so the list reflects reality
7. **Approval gate** - Do not start implementation until the proposal is reviewed and approved
### Stage 3: Archiving Changes
After deployment, create separate PR to:
- Move `changes/[name]/``changes/archive/YYYY-MM-DD-[name]/`
- Update `specs/` if capabilities changed
- Use `openspec archive <change-id> --skip-specs --yes` for tooling-only changes (always pass the change ID explicitly)
- Run `openspec validate --strict` to confirm the archived change passes checks
## Before Any Task
**Context Checklist:**
- [ ] Read relevant specs in `specs/[capability]/spec.md`
- [ ] Check pending changes in `changes/` for conflicts
- [ ] Read `openspec/project.md` for conventions
- [ ] Run `openspec list` to see active changes
- [ ] Run `openspec list --specs` to see existing capabilities
**Before Creating Specs:**
- Always check if capability already exists
- Prefer modifying existing specs over creating duplicates
- Use `openspec show [spec]` to review current state
- If request is ambiguous, ask 12 clarifying questions before scaffolding
### Search Guidance
- Enumerate specs: `openspec spec list --long` (or `--json` for scripts)
- Enumerate changes: `openspec list` (or `openspec change list --json` - deprecated but available)
- Show details:
- Spec: `openspec show <spec-id> --type spec` (use `--json` for filters)
- Change: `openspec show <change-id> --json --deltas-only`
- Full-text search (use ripgrep): `rg -n "Requirement:|Scenario:" openspec/specs`
## Quick Start
### CLI Commands
```bash
# Essential commands
openspec list # List active changes
openspec list --specs # List specifications
openspec show [item] # Display change or spec
openspec validate [item] # Validate changes or specs
openspec archive <change-id> [--yes|-y] # Archive after deployment (add --yes for non-interactive runs)
# Project management
openspec init [path] # Initialize OpenSpec
openspec update [path] # Update instruction files
# Interactive mode
openspec show # Prompts for selection
openspec validate # Bulk validation mode
# Debugging
openspec show [change] --json --deltas-only
openspec validate [change] --strict
```
### Command Flags
- `--json` - Machine-readable output
- `--type change|spec` - Disambiguate items
- `--strict` - Comprehensive validation
- `--no-interactive` - Disable prompts
- `--skip-specs` - Archive without spec updates
- `--yes`/`-y` - Skip confirmation prompts (non-interactive archive)
## Directory Structure
```
openspec/
├── project.md # Project conventions
├── specs/ # Current truth - what IS built
│ └── [capability]/ # Single focused capability
│ ├── spec.md # Requirements and scenarios
│ └── design.md # Technical patterns
├── changes/ # Proposals - what SHOULD change
│ ├── [change-name]/
│ │ ├── proposal.md # Why, what, impact
│ │ ├── tasks.md # Implementation checklist
│ │ ├── design.md # Technical decisions (optional; see criteria)
│ │ └── specs/ # Delta changes
│ │ └── [capability]/
│ │ └── spec.md # ADDED/MODIFIED/REMOVED
│ └── archive/ # Completed changes
```
## Creating Change Proposals
### Decision Tree
```
New request?
├─ Bug fix restoring spec behavior? → Fix directly
├─ Typo/format/comment? → Fix directly
├─ New feature/capability? → Create proposal
├─ Breaking change? → Create proposal
├─ Architecture change? → Create proposal
└─ Unclear? → Create proposal (safer)
```
### Proposal Structure
1. **Create directory:** `changes/[change-id]/` (kebab-case, verb-led, unique)
2. **Write proposal.md:**
```markdown
# Change: [Brief description of change]
## Why
[1-2 sentences on problem/opportunity]
## What Changes
- [Bullet list of changes]
- [Mark breaking changes with **BREAKING**]
## Impact
- Affected specs: [list capabilities]
- Affected code: [key files/systems]
```
3. **Create spec deltas:** `specs/[capability]/spec.md`
```markdown
## ADDED Requirements
### Requirement: New Feature
The system SHALL provide...
#### Scenario: Success case
- **WHEN** user performs action
- **THEN** expected result
## MODIFIED Requirements
### Requirement: Existing Feature
[Complete modified requirement]
## REMOVED Requirements
### Requirement: Old Feature
**Reason**: [Why removing]
**Migration**: [How to handle]
```
If multiple capabilities are affected, create multiple delta files under `changes/[change-id]/specs/<capability>/spec.md`—one per capability.
4. **Create tasks.md:**
```markdown
## 1. Implementation
- [ ] 1.1 Create database schema
- [ ] 1.2 Implement API endpoint
- [ ] 1.3 Add frontend component
- [ ] 1.4 Write tests
```
5. **Create design.md when needed:**
Create `design.md` if any of the following apply; otherwise omit it:
- Cross-cutting change (multiple services/modules) or a new architectural pattern
- New external dependency or significant data model changes
- Security, performance, or migration complexity
- Ambiguity that benefits from technical decisions before coding
Minimal `design.md` skeleton:
```markdown
## Context
[Background, constraints, stakeholders]
## Goals / Non-Goals
- Goals: [...]
- Non-Goals: [...]
## Decisions
- Decision: [What and why]
- Alternatives considered: [Options + rationale]
## Risks / Trade-offs
- [Risk] → Mitigation
## Migration Plan
[Steps, rollback]
## Open Questions
- [...]
```
## Spec File Format
### Critical: Scenario Formatting
**CORRECT** (use #### headers):
```markdown
#### Scenario: User login success
- **WHEN** valid credentials provided
- **THEN** return JWT token
```
**WRONG** (don't use bullets or bold):
```markdown
- **Scenario: User login** ❌
**Scenario**: User login ❌
### Scenario: User login ❌
```
Every requirement MUST have at least one scenario.
### Requirement Wording
- Use SHALL/MUST for normative requirements (avoid should/may unless intentionally non-normative)
### Delta Operations
- `## ADDED Requirements` - New capabilities
- `## MODIFIED Requirements` - Changed behavior
- `## REMOVED Requirements` - Deprecated features
- `## RENAMED Requirements` - Name changes
Headers matched with `trim(header)` - whitespace ignored.
#### When to use ADDED vs MODIFIED
- ADDED: Introduces a new capability or sub-capability that can stand alone as a requirement. Prefer ADDED when the change is orthogonal (e.g., adding "Slash Command Configuration") rather than altering the semantics of an existing requirement.
- MODIFIED: Changes the behavior, scope, or acceptance criteria of an existing requirement. Always paste the full, updated requirement content (header + all scenarios). The archiver will replace the entire requirement with what you provide here; partial deltas will drop previous details.
- RENAMED: Use when only the name changes. If you also change behavior, use RENAMED (name) plus MODIFIED (content) referencing the new name.
Common pitfall: Using MODIFIED to add a new concern without including the previous text. This causes loss of detail at archive time. If you arent explicitly changing the existing requirement, add a new requirement under ADDED instead.
Authoring a MODIFIED requirement correctly:
1) Locate the existing requirement in `openspec/specs/<capability>/spec.md`.
2) Copy the entire requirement block (from `### Requirement: ...` through its scenarios).
3) Paste it under `## MODIFIED Requirements` and edit to reflect the new behavior.
4) Ensure the header text matches exactly (whitespace-insensitive) and keep at least one `#### Scenario:`.
Example for RENAMED:
```markdown
## RENAMED Requirements
- FROM: `### Requirement: Login`
- TO: `### Requirement: User Authentication`
```
## Troubleshooting
### Common Errors
**"Change must have at least one delta"**
- Check `changes/[name]/specs/` exists with .md files
- Verify files have operation prefixes (## ADDED Requirements)
**"Requirement must have at least one scenario"**
- Check scenarios use `#### Scenario:` format (4 hashtags)
- Don't use bullet points or bold for scenario headers
**Silent scenario parsing failures**
- Exact format required: `#### Scenario: Name`
- Debug with: `openspec show [change] --json --deltas-only`
### Validation Tips
```bash
# Always use strict mode for comprehensive checks
openspec validate [change] --strict
# Debug delta parsing
openspec show [change] --json | jq '.deltas'
# Check specific requirement
openspec show [spec] --json -r 1
```
## Happy Path Script
```bash
# 1) Explore current state
openspec spec list --long
openspec list
# Optional full-text search:
# rg -n "Requirement:|Scenario:" openspec/specs
# rg -n "^#|Requirement:" openspec/changes
# 2) Choose change id and scaffold
CHANGE=add-two-factor-auth
mkdir -p openspec/changes/$CHANGE/{specs/auth}
printf "## Why\n...\n\n## What Changes\n- ...\n\n## Impact\n- ...\n" > openspec/changes/$CHANGE/proposal.md
printf "## 1. Implementation\n- [ ] 1.1 ...\n" > openspec/changes/$CHANGE/tasks.md
# 3) Add deltas (example)
cat > openspec/changes/$CHANGE/specs/auth/spec.md << 'EOF'
## ADDED Requirements
### Requirement: Two-Factor Authentication
Users MUST provide a second factor during login.
#### Scenario: OTP required
- **WHEN** valid credentials are provided
- **THEN** an OTP challenge is required
EOF
# 4) Validate
openspec validate $CHANGE --strict
```
## Multi-Capability Example
```
openspec/changes/add-2fa-notify/
├── proposal.md
├── tasks.md
└── specs/
├── auth/
│ └── spec.md # ADDED: Two-Factor Authentication
└── notifications/
└── spec.md # ADDED: OTP email notification
```
auth/spec.md
```markdown
## ADDED Requirements
### Requirement: Two-Factor Authentication
...
```
notifications/spec.md
```markdown
## ADDED Requirements
### Requirement: OTP Email Notification
...
```
## Best Practices
### Simplicity First
- Default to <100 lines of new code
- Single-file implementations until proven insufficient
- Avoid frameworks without clear justification
- Choose boring, proven patterns
### Complexity Triggers
Only add complexity with:
- Performance data showing current solution too slow
- Concrete scale requirements (>1000 users, >100MB data)
- Multiple proven use cases requiring abstraction
### Clear References
- Use `file.ts:42` format for code locations
- Reference specs as `specs/auth/spec.md`
- Link related changes and PRs
### Capability Naming
- Use verb-noun: `user-auth`, `payment-capture`
- Single purpose per capability
- 10-minute understandability rule
- Split if description needs "AND"
### Change ID Naming
- Use kebab-case, short and descriptive: `add-two-factor-auth`
- Prefer verb-led prefixes: `add-`, `update-`, `remove-`, `refactor-`
- Ensure uniqueness; if taken, append `-2`, `-3`, etc.
## Tool Selection Guide
| Task | Tool | Why |
|------|------|-----|
| Find files by pattern | Glob | Fast pattern matching |
| Search code content | Grep | Optimized regex search |
| Read specific files | Read | Direct file access |
| Explore unknown scope | Task | Multi-step investigation |
## Error Recovery
### Change Conflicts
1. Run `openspec list` to see active changes
2. Check for overlapping specs
3. Coordinate with change owners
4. Consider combining proposals
### Validation Failures
1. Run with `--strict` flag
2. Check JSON output for details
3. Verify spec file format
4. Ensure scenarios properly formatted
### Missing Context
1. Read project.md first
2. Check related specs
3. Review recent archives
4. Ask for clarification
## Quick Reference
### Stage Indicators
- `changes/` - Proposed, not yet built
- `specs/` - Built and deployed
- `archive/` - Completed changes
### File Purposes
- `proposal.md` - Why and what
- `tasks.md` - Implementation steps
- `design.md` - Technical decisions
- `spec.md` - Requirements and behavior
### CLI Essentials
```bash
openspec list # What's in progress?
openspec show [item] # View details
openspec validate --strict # Is it correct?
openspec archive <change-id> [--yes|-y] # Mark complete (add --yes for automation)
```
Remember: Specs are truth. Changes are proposals. Keep them in sync.

View File

@@ -0,0 +1,107 @@
## Context
This is the initial implementation of the DocProcesser service. The system integrates multiple external models and services:
- DocLayout-YOLO for document layout analysis
- PaddleOCR-VL with PP-DocLayoutV2 for text and formula recognition (deployed via vLLM)
- markdown_2_docx for document conversion
Target deployment: Ubuntu machine with RTX 5080 GPU (16GB VRAM), Python 3.11.0.
## Goals / Non-Goals
**Goals:**
- Clean FastAPI project structure following best practices
- Image preprocessing with OpenCV (30% padding)
- Layout-aware OCR routing using DocLayout-YOLO
- Text and formula recognition via PaddleOCR-VL
- Markdown to DOCX conversion
- GPU-enabled Docker deployment
**Non-Goals:**
- Authentication/authorization (can be added later)
- Rate limiting
- Persistent storage
- Training or fine-tuning models
## Decisions
### Project Structure
Follow FastAPI best practices with modular organization:
```
app/
├── api/
│ └── v1/
│ ├── endpoints/
│ │ ├── image.py # Image OCR endpoint
│ │ └── convert.py # Markdown to DOCX endpoint
│ └── router.py
├── core/
│ └── config.py # Settings and environment config
|—— model/
| |—— DocLayout
| |—— PP-DocLayout
├── services/
│ ├── image_processor.py # OpenCV preprocessing
│ ├── layout_detector.py # DocLayout-YOLO wrapper
│ ├── ocr_service.py # PaddleOCR-VL client
│ └── docx_converter.py # markdown_2_docx wrapper
├── schemas/
│ ├── image.py # Request/response models for image OCR
│ └── convert.py # Request/response models for conversion
└── main.py # FastAPI app initialization
```
**Rationale:** Separation of concerns between API layer, business logic (services), and data models (schemas).
### Image Preprocessing
- Use OpenCV `cv2.copyMakeBorder()` to add 30% whitespace padding
- Padding color: white `[255, 255, 255]`
- This matches DocLayout-YOLO's demo.py pattern
### Layout Detection Flow
1. DocLayout-YOLO detects layout regions (plain text, formulas, tables, figures)
2. Exsit plain text, routes to PaddleOCR-VL with PP-DocLayoutV2, othewise routes to PaddleOCR-VL with prompt
3. PaddleOCR-VL combined PP-DocLayoutV2 handles mixed content recognition internally, PaddleOCR-VL combined prompt handles formula
### External Service Integration
- PaddleOCR-VL: Connect to vLLM server at configurable URL (default: `http://localhost:8080/v1`)
- DocLayout-YOLO: Load model from pre-downloaded path (not downloaded in container)
### Docker Strategy
- Base image: NVIDIA CUDA with Python 3.11
- Pre-install OpenCV dependencies (`libgl1-mesa-glx`, `libglib2.0-0`)
- Mount model directory for DocLayout-YOLO weights
- Expose port 8053
- Use Uvicorn with multiple workers
## Risks / Trade-offs
| Risk | Mitigation |
| --------------------------------- | ------------------------------------------------------------------ |
| PaddleOCR-VL service unavailable | Health check endpoint, retry logic with exponential backoff |
| Large image memory consumption | Configure max image size, resize before processing |
| DocLayout-YOLO model loading time | Load model once at startup, keep in memory |
| GPU memory contention | DocLayout-YOLO uses GPU; PaddleOCR-VL runs on separate vLLM server |
## Configuration
Environment variables:
- `PADDLEOCR_VL_URL`: vLLM server URL (default: `http://localhost:8000/v1`)
- `DOCLAYOUT_MODEL_PATH`: Path to DocLayout-YOLO weights
- `PP_DOCLAYOUT_MODEL_DIR`: Path to PP-DocLayoutV3 model directory
- `MAX_IMAGE_SIZE_MB`: Maximum upload size (default: 10)
## Open Questions
- Should we add async queue for large batch processing? (Defer to future change)
- Do we need WebSocket for progress updates? (Defer to future change)

View File

@@ -0,0 +1,31 @@
# Change: Add Document Processing API
## Why
DocProcesser needs a FastAPI backend to accept images (via URL or base64) and convert them to LaTeX/Markdown/MathML, plus a markdown-to-DOCX conversion endpoint. This establishes the core functionality of the project.
## What Changes
- **BREAKING**: Initial project setup (new FastAPI project structure)
- Add image-to-OCR API endpoint (`POST /doc_process/v1/image/ocr`)
- Accept `image_url` or `image_base64` input
- Preprocess with OpenCV (30% whitespace padding)
- Use DocLayout-YOLO for layout detection
- Route to PaddleOCR-VL (with PP-DocLayoutV2) for text/formula recognition
- Exists `plain_text` element, use PP-DocLayoutV2 to recognize the image as mixed_recognition , otherwise directly PaddleOCR-VL API combined with prompt Formula Recognition as formula_recognition.
- Refrence markdown_2_docx code convert the markdown to latex, mathml for mixed_recognition, convert the latex to markdown, mathml for formula_recognition
- Return LaTeX, Markdown, and MathML outputs
- Add markdown-to-DOCX API endpoint (`POST /doc_process/v1/convert/docx`)
- Accept markdown content
- Refrence markdown_2_docx library for conversion, the address is http://github.com/YogeLiu/markdown_2_docxdd.
- Return DOCX file
- Add Dockerfile for GPU-enabled deployment (RTX 5080, port 8053)
## Impact
- Affected specs: `image-ocr`, `markdown-docx`
- Affected code: New project structure under `app/`
- External dependencies:
- DocLayout-YOLO (pre-downloaded model, not fetched in container)
- PaddleOCR-VL with vLLM backend (external service at localhost:8080)
- markdown_2_docx library

View File

@@ -0,0 +1,137 @@
## ADDED Requirements
### Requirement: Image Input Acceptance
The system SHALL accept images via `POST /api/v1/image/ocr` endpoint with either:
- `image_url`: A publicly accessible URL to the image
- `image_base64`: Base64-encoded image data
The system SHALL return an error if neither input is provided or if both are provided simultaneously.
#### Scenario: Image URL provided
- **WHEN** a valid `image_url` is provided in the request body
- **THEN** the system SHALL download the image and process it
- **AND** return OCR results in the response
#### Scenario: Base64 image provided
- **WHEN** a valid `image_base64` string is provided in the request body
- **THEN** the system SHALL decode the image and process it
- **AND** return OCR results in the response
#### Scenario: Invalid input
- **WHEN** neither `image_url` nor `image_base64` is provided
- **THEN** the system SHALL return HTTP 422 with validation error
---
### Requirement: Image Preprocessing with Padding
The system SHALL preprocess all input images by adding 30% whitespace padding around the image borders using OpenCV.
The padding calculation: `padding = int(max(height, width) * 0.15)` on each side (totaling 30% expansion).
The padding color SHALL be white (`RGB: 255, 255, 255`).
#### Scenario: Image padding applied
- **WHEN** an image of dimensions 1000x800 pixels is received
- **THEN** the system SHALL add approximately 150 pixels of white padding on each side
- **AND** the resulting image dimensions SHALL be approximately 1300x1100 pixels
---
### Requirement: Layout Detection with DocLayout-YOLO
The system SHALL use DocLayout-YOLO model to detect document layout regions including:
- Plain text blocks
- Formulas/equations
- Tables
- Figures
The model SHALL be loaded from a pre-configured local path (not downloaded at runtime).
#### Scenario: Layout detection success
- **WHEN** a padded image is passed to DocLayout-YOLO
- **THEN** the system SHALL return detected regions with bounding boxes and class labels
- **AND** confidence scores for each detection
#### Scenario: Model not available
- **WHEN** the DocLayout-YOLO model file is not found at the configured path
- **THEN** the system SHALL fail startup with a clear error message
---
### Requirement: OCR Processing with PaddleOCR-VL
The system SHALL send images to PaddleOCR-VL (via vLLM backend) for text and formula recognition.
PaddleOCR-VL SHALL be configured with PP-DocLayoutV2 for document layout understanding.
The system SHALL handle both plain text and formula/math content.
#### Scenario: Plain text recognition
- **WHEN** DocLayout-YOLO detects plain text regions
- **THEN** the system SHALL send the image to PaddleOCR-VL
- **AND** return recognized text content
#### Scenario: Formula recognition
- **WHEN** DocLayout-YOLO detects formula/equation regions
- **THEN** the system SHALL send the image to PaddleOCR-VL
- **AND** return formula content in LaTeX format
#### Scenario: Mixed content handling
- **WHEN** DocLayout-YOLO detects both text and formula regions
- **THEN** the system SHALL process all regions via PaddleOCR-VL with PP-DocLayoutV3
- **AND** return combined results preserving document structure
#### Scenario: PaddleOCR-VL service unavailable
- **WHEN** the PaddleOCR-VL vLLM server is unreachable
- **THEN** the system SHALL return HTTP 503 with service unavailable error
---
### Requirement: Multi-Format Output
The system SHALL return OCR results in multiple formats:
- `latex`: LaTeX representation of the content
- `markdown`: Markdown representation of the content
- `mathml`: MathML representation for mathematical content
#### Scenario: Successful OCR response
- **WHEN** image processing completes successfully
- **THEN** the response SHALL include:
- `latex`: string containing LaTeX output
- `markdown`: string containing Markdown output
- `mathml`: string containing MathML output (empty string if no math detected)
- **AND** HTTP status code SHALL be 200
#### Scenario: Response structure
- **WHEN** the OCR endpoint returns successfully
- **THEN** the response body SHALL be JSON with structure:
```json
{
"latex": "...",
"markdown": "...",
"mathml": "...",
"layout_info": {
"regions": [
{"type": "text|formula|table|figure", "bbox": [x1, y1, x2, y2], "confidence": 0.95}
]
}
}
```

View File

@@ -0,0 +1,93 @@
## ADDED Requirements
### Requirement: Markdown Input Acceptance
The system SHALL accept markdown content via `POST /api/v1/convert/docx` endpoint.
The request body SHALL contain:
- `markdown`: string containing the markdown content to convert
#### Scenario: Valid markdown provided
- **WHEN** valid markdown content is provided in the request body
- **THEN** the system SHALL process and convert it to DOCX format
#### Scenario: Empty markdown
- **WHEN** an empty `markdown` string is provided
- **THEN** the system SHALL return HTTP 422 with validation error
---
### Requirement: DOCX Conversion
The system SHALL convert markdown content to DOCX format using the markdown_2_docx library.
The conversion SHALL preserve:
- Headings (H1-H6)
- Paragraphs
- Bold and italic formatting
- Lists (ordered and unordered)
- Code blocks
- Tables
- Images (if embedded as base64 or accessible URLs)
#### Scenario: Basic markdown conversion
- **WHEN** markdown with headings, paragraphs, and formatting is provided
- **THEN** the system SHALL generate a valid DOCX file
- **AND** the DOCX SHALL preserve the document structure
#### Scenario: Complex markdown with tables
- **WHEN** markdown containing tables is provided
- **THEN** the system SHALL convert tables to Word table format
- **AND** preserve table structure and content
#### Scenario: Markdown with math formulas
- **WHEN** markdown containing LaTeX math expressions is provided
- **THEN** the system SHALL convert math to OMML (Office Math Markup Language) format
- **AND** render correctly in Microsoft Word
---
### Requirement: DOCX File Response
The system SHALL return the generated DOCX file as a binary download.
The response SHALL include:
- Content-Type: `application/vnd.openxmlformats-officedocument.wordprocessingml.document`
- Content-Disposition: `attachment; filename="output.docx"`
#### Scenario: Successful conversion response
- **WHEN** markdown conversion completes successfully
- **THEN** the response SHALL be the DOCX file binary
- **AND** HTTP status code SHALL be 200
- **AND** appropriate headers for file download SHALL be set
#### Scenario: Custom filename
- **WHEN** an optional `filename` parameter is provided in the request
- **THEN** the Content-Disposition header SHALL use the provided filename
- **AND** append `.docx` extension if not present
---
### Requirement: Error Handling
The system SHALL provide clear error responses for conversion failures.
#### Scenario: Conversion failure
- **WHEN** markdown_2_docx fails to convert the content
- **THEN** the system SHALL return HTTP 500 with error details
- **AND** the error message SHALL describe the failure reason
#### Scenario: Malformed markdown
- **WHEN** severely malformed markdown is provided
- **THEN** the system SHALL attempt best-effort conversion
- **AND** log a warning about potential formatting issues

View File

@@ -0,0 +1,34 @@
## 1. Project Scaffolding
- [x] 1.1 Create FastAPI project structure (`app/`, `api/`, `core/`, `services/`, `schemas/`)
- [x] 1.2 Use uv handle with dependencies (fastapi, uvicorn, opencv-python, python-multipart, pydantic, httpx)
- [x] 1.3 Create `app/main.py` with FastAPI app initialization
- [x] 1.4 Create `app/core/config.py` with Pydantic Settings
## 2. Image OCR API
- [x] 2.1 Create request/response schemas in `app/schemas/image.py`
- [x] 2.2 Implement image preprocessing service with OpenCV padding (`app/services/image_processor.py`)
- [x] 2.3 Implement DocLayout-YOLO wrapper (`app/services/layout_detector.py`)
- [x] 2.4 Implement PaddleOCR-VL client (`app/services/ocr_service.py`)
- [x] 2.5 Create image OCR endpoint (`app/api/v1/endpoints/image.py`)
- [x] 2.6 Wire up router and test endpoint
## 3. Markdown to DOCX API
- [x] 3.1 Create request/response schemas in `app/schemas/convert.py`
- [x] 3.2 Integrate markdown_2_docx library (`app/services/docx_converter.py`)
- [x] 3.3 Create conversion endpoint (`app/api/v1/endpoints/convert.py`)
- [x] 3.4 Wire up router and test endpoint
## 4. Deployment
- [x] 4.1 Create Dockerfile with CUDA base image for RTX 5080
- [x] 4.2 Create docker-compose.yml (optional, for local development)
- [x] 4.3 Document deployment steps in README
## 5. Validation
- [ ] 5.1 Test image OCR endpoint with sample images
- [ ] 5.2 Test markdown to DOCX conversion
- [ ] 5.3 Verify Docker build and GPU access

42
openspec/project.md Normal file
View File

@@ -0,0 +1,42 @@
# Project Context
## Purpose
This project is DocProcesser which can process the image to latex, markdown, mathml, omml, ect.
It is a fastapi web project, it accept the request from upstream and process the image or send the image to the third-part, then return the result to upstream.
## Tech Stack
- python
- fastapi
## Project Conventions
### Code Style
[Describe your code style preferences, formatting rules, and naming conventions]
### Architecture Patterns
[Document your architectural decisions and patterns]
### Testing Strategy
[Explain your testing approach and requirements]
### Git Workflow
[Describe your branching strategy and commit conventions]
## Domain Context
- DocLayout
A YOLO model which can recognize the document layout (Book, Paper, NewPapers) will be used to recongize if has plain text in a image.
## Important Constraints
[List any technical, business, or regulatory constraints]
## External Dependencies
[Document key external services, APIs, or systems]

53
pyproject.toml Normal file
View File

@@ -0,0 +1,53 @@
[project]
name = "doc-processer"
version = "0.1.0"
description = "Document processing API - Image to LaTeX/Markdown/MathML and Markdown to DOCX"
readme = "README.md"
requires-python = ">=3.11"
license = { text = "MIT" }
authors = [
{ name = "YogeLiu" }
]
dependencies = [
"fastapi>=0.115.0",
"uvicorn[standard]>=0.32.0",
"opencv-python>=4.10.0",
"python-multipart>=0.0.12",
"pydantic>=2.10.0",
"pydantic-settings>=2.6.0",
"httpx>=0.28.0",
"numpy>=1.26.0",
"pillow>=10.4.0",
"python-docx>=1.1.0",
"paddleocr>=2.9.0",
"doclayout-yolo>=0.0.2",
"latex2mathml>=3.77.0",
]
[project.optional-dependencies]
dev = [
"pytest>=8.0.0",
"pytest-asyncio>=0.24.0",
"ruff>=0.8.0",
]
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
[tool.hatch.build.targets.wheel]
packages = ["app"]
[tool.ruff]
target-version = "py311"
line-length = 100
[tool.ruff.lint]
select = ["E", "F", "I", "UP"]
ignore = ["E501"]
[tool.pytest.ini_options]
asyncio_mode = "auto"
testpaths = ["tests"]