2024-02-12 11:40:51 +00:00
<div align="center">
2024-03-18 15:48:04 +00:00
<h1>
<img src="./fire.svg" width=30, height=30>
𝚃 𝚎 𝚡 𝚃 𝚎 𝚕 𝚕 𝚎 𝚛
<img src="./fire.svg" width=30, height=30>
</h1>
<p align="center">
<a href="../README.md">English</a> | 中文
</p>
2024-03-25 06:54:22 +00:00
<!-- <p align="center">
2024-03-18 15:48:04 +00:00
<img src="./web_demo.gif" alt="TexTeller_demo" width=800>
2024-03-25 06:54:22 +00:00
</p> -->
2024-02-12 11:40:51 +00:00
</div>
TexTeller是一个基于ViT的端到端公式识别模型, 可以把图片转换为对应的latex公式
2024-03-18 15:48:04 +00:00
TexTeller用了~~550K~~7.5M的图片-公式对进行训练(数据集可以在[这里 ](https://huggingface.co/datasets/OleehyO/latex-formulas )获取),相比于[LaTeX-OCR ](https://github.com/lukas-blecher/LaTeX-OCR )(使用了一个100K的数据集), TexTeller具有**更强的泛化能力**以及**更高的准确率**,可以覆盖大部分的使用场景(**扫描图片,手写公式除外**)。
2024-02-12 11:40:51 +00:00
2024-03-18 15:48:04 +00:00
> ~~我们马上就会发布一个使用7.5M数据集进行训练的TexTeller checkpoint~~
2024-02-12 11:40:51 +00:00
2024-03-18 15:48:04 +00:00
## 🔄 变更信息
* 📮[2024-03-24] TexTeller2.0发布! TexTeller2.0的训练数据增大到了7.5M(相较于TexTeller1.0**增加了~15倍**并且数据质量也有所改善)。训练后的TexTeller2.0在测试集中展现出了**更加优越的性能**,尤其在生僻符号、复杂多行、矩阵的识别场景中。
2024-03-25 06:54:22 +00:00
> 在[这里](./test.pdf)有更多的测试图片以及各家识别模型的横向对比。
2024-03-18 15:48:04 +00:00
## 🔑 前置条件
2024-02-12 11:40:51 +00:00
python=3.10
pytorch
2024-03-25 06:54:22 +00:00
> [!WARNING]
> 只有CUDA版本>= 12.0被完全测试过,所以最好使用>= 12.0的CUDA版本
2024-02-12 11:40:51 +00:00
2024-03-18 15:48:04 +00:00
## 🖼 关于把latex渲染成图片
* **安装XeLaTex** 并确保`xelatex` 可以直接被命令行调用。
* 为了确保正确渲染预测出的公式, 需要在`.tex` 文件中**引入以下宏包**:
```tex
\usepackage{multirow,multicol,amsmath,amsfonts,amssymb,mathtools,bm,mathrsfs,wasysym,amsbsy,upgreek,mathalfa,stmaryrd,mathrsfs,dsfont,amsthm,amsmath,multirow}
```
## 🚀 开搞
2024-02-12 11:40:51 +00:00
1. 克隆本仓库:
```bash
git clone https://github.com/OleehyO/TexTeller
```
2. [安装pytorch ](https://pytorch.org/get-started/locally/#start-locally )后,再安装本项目的依赖包:
```bash
pip install -r requirements.txt
```
3. 进入`TexTeller/src` 目录,在终端运行以下命令进行推理:
```bash
python inference.py -img "/path/to/image.{jpg,png}"
# use -cuda option to enable GPU inference
#+e.g. python inference.py -img "./img.jpg" -cuda
```
2024-03-25 07:32:33 +00:00
> [!NOTE]
> 第一次运行时会在hugging face上下载所需要的checkpoints
2024-02-12 11:40:51 +00:00
2024-03-18 15:48:04 +00:00
## ❓ 常见问题: 无法连接到Hugging Face
2024-02-12 11:40:51 +00:00
默认情况下, 会在Hugging Face中下载模型权重, **如果你的远端服务器无法连接到Hugging Face**,你可以通过以下命令进行加载:
1. 安装huggingface hub包
```bash
pip install -U "huggingface_hub[cli]"
```
2. 在能连接Hugging Face的机器上下载模型权重:
```bash
huggingface-cli download OleehyO/TexTeller --include "*.json" "*.bin" "*.txt" --repo-type model --local-dir "your/dir/path"
```
3. 把包含权重的目录上传远端服务器,然后把`TexTeller/src/models/ocr_model/model/TexTeller.py` 中的`REPO_NAME = 'OleehyO/TexTeller'` 修改为`REPO_NAME = 'your/dir/path'`
如果你还想在训练模型时开启evaluate, 你需要提前下载metric脚本并上传远端服务器:
1. 在能连接Hugging Face的机器上下载metric脚本
```bash
huggingface-cli download evaluate-metric/google_bleu --repo-type space --local-dir "your/dir/path"
```
2024-02-12 16:33:49 +00:00
2. 把这个目录上传远端服务器,并在`TexTeller/src/models/ocr_model/utils/metrics.py` 中把`evaluate.load('google_bleu')` 改为`evaluate.load('your/dir/path/google_bleu.py')`
2024-02-12 11:40:51 +00:00
2024-03-18 15:48:04 +00:00
## 🌐 网页演示
2024-02-12 11:40:51 +00:00
要想启动web demo, 你需要先进入 `TexTeller/src` 目录,然后运行以下命令
```bash
./start_web.sh
```
然后在浏览器里输入`http://localhost:8501` 就可以看到web demo
2024-03-25 06:54:22 +00:00
> [!TIP]
2024-02-12 11:40:51 +00:00
> 你可以改变`start_web.sh`的默认配置, 例如使用GPU进行推理(e.g. `USE_CUDA=True`) 或者增加beams的数量(e.g. `NUM_BEAM=3`)来获得更高的精确度
2024-03-25 06:54:22 +00:00
> [!IMPORTANT]
> 如果你想直接把预测结果在网页上渲染成图片(比如为了检查预测结果是否正确)你需要确保[xelatex被正确安装](https://github.com/OleehyO/TexTeller?tab=readme-ov-file#Rendering-Predicted-Results)
2024-03-18 15:48:04 +00:00
## 📡 API调用
2024-02-12 11:40:51 +00:00
我们使用[ray serve ](https://github.com/ray-project/ray )来对外提供一个TexTeller的API接口, 通过使用这个接口, 你可以把TexTeller整合到自己的项目里。要想启动server, 你需要先进入`TexTeller/src` 目录然后运行以下命令:
```bash
2024-03-01 22:42:15 +08:00
python server.py # default settings
2024-02-12 11:40:51 +00:00
```
2024-03-01 22:42:15 +08:00
你可以给`server.py` 传递以下参数来改变server的推理设置(e.g. `python server.py --use_gpu` 来启动GPU推理):
2024-02-12 11:40:51 +00:00
2024-03-18 15:48:04 +00:00
| 参数 | 描述 |
2024-02-12 11:40:51 +00:00
| --- | --- |
2024-03-18 15:48:04 +00:00
| `-ckpt` | 权重文件的路径,*默认为TexTeller的预训练权重*。|
| `-tknz` | 分词器的路径, * 默认为TexTeller的分词器 * 。|
| `-port` | 服务器的服务端口, * 默认是8000 * 。 |
| `--use_gpu` | 是否使用GPU推理, *默认为CPU*。 |
| `--num_beams` | beam search的beam数量, * 默认是1 * 。 |
| `--num_replicas` | 在服务器上运行的服务副本数量, * 默认1个副本 * 。你可以使用更多的副本来获取更大的吞吐量。|
| `--ncpu_per_replica` | 每个服务副本所用的CPU核心数, *默认为1*。 |
| `--ngpu_per_replica` | 每个服务副本所用的GPU数量, *默认为1*。你可以把这个值设置成 0~1之间的数, 这样会在一个GPU上运行多个服务副本来共享GPU, 从而提高GPU的利用率。(注意,如果 --num_replicas 2, --ngpu_per_replica 0.7, 那么就必须要有2个GPU可用) |
2024-02-12 11:40:51 +00:00
2024-03-25 06:54:22 +00:00
> [!NOTE]
2024-02-12 11:40:51 +00:00
> 一个客户端demo可以在`TexTeller/client/demo.py`找到,你可以参考`demo.py`来给server发送请求
2024-03-18 15:48:04 +00:00
## 🏋️♂️ 训练
2024-02-12 11:40:51 +00:00
2024-03-18 15:48:04 +00:00
### 数据集
2024-02-12 11:40:51 +00:00
我们在`TexTeller/src/models/ocr_model/train/dataset` 目录中提供了一个数据集的例子,你可以把自己的图片放在`images` 目录然后在`formulas.jsonl` 中为每张图片标注对应的公式。
准备好数据集后,你需要在`.../dataset/loader.py` 中把 * * `DIR_URL` 变量改成你自己数据集的路径**
2024-03-18 15:48:04 +00:00
### 重新训练分词器
2024-02-12 11:40:51 +00:00
如果你使用了不一样的数据集, 你可能需要重新训练tokenizer来得到一个不一样的字典。配置好数据集后, 可以通过以下命令来训练自己的tokenizer:
2024-02-12 16:27:58 +00:00
1. 在`TexTeller/src/models/tokenizer/train.py` 中,修改`new_tokenizer.save_pretrained('./your_dir_name')` 为你自定义的输出目录
2024-03-25 06:54:22 +00:00
> [!IMPORTANT]
2024-02-12 11:40:51 +00:00
> 如果要用一个不一样大小的字典(默认1W个token),你需要在 `TexTeller/src/models/globals.py`中修改`VOCAB_SIZE`变量
2. **在 `TexTeller/src` 目录下**运行以下命令:
```bash
2024-02-12 16:27:58 +00:00
python -m models.tokenizer.train
2024-02-12 11:40:51 +00:00
```
2024-03-18 15:48:04 +00:00
### 训练模型
2024-02-12 11:40:51 +00:00
要想训练模型, 你需要在`TexTeller/src` 目录下运行以下命令:
```bash
python -m models.ocr_model.train.train
```
你可以在`TexTeller/src/models/ocr_model/train/train.py` 中设置自己的tokenizer和checkpoint路径( 请参考`train.py` ) 。如果你使用了与TexTeller一样的架构和相同的字典, 你还可以用自己的数据集来微调TexTeller的默认权重。
在`TexTeller/src/globals.py` 和`TexTeller/src/models/ocr_model/train/train_args.py` 中,你可以改变模型的架构以及训练的超参数。
2024-03-25 06:54:22 +00:00
> [!NOTE]
2024-02-12 11:40:51 +00:00
> 我们的训练脚本使用了[Hugging Face Transformers](https://github.com/huggingface/transformers)库, 所以你可以参考他们提供的[文档](https://huggingface.co/docs/transformers/v4.32.1/main_classes/trainer#transformers.TrainingArguments)来获取更多训练参数的细节以及配置。
2024-03-18 15:48:04 +00:00
## 🚧 不足
* 不支持扫描图片以及PDF文档识别
* 不支持手写体公式
## 📅 计划
- [x] ~~使用更大的数据集来训练模型(7.5M样本,即将发布)~~
- [ ] 扫描图片识别
- [ ] PDF文档识别 + 中英文场景支持
2024-02-12 11:40:51 +00:00
- [ ] 推理加速
- [ ] ...
2024-03-18 15:48:04 +00:00
## 💖 感谢
Thanks to [LaTeX-OCR ](https://github.com/lukas-blecher/LaTeX-OCR ) which has brought me a lot of inspiration, and [im2latex-100K ](https://zenodo.org/records/56198#.V2px0jXT6eA ) which enriches our dataset.
## ⭐️ 观星曲线
2024-02-12 11:40:51 +00:00
2024-03-18 15:48:04 +00:00
[](https://starchart.cc/OleehyO/TexTeller)