update
This commit is contained in:
142
README.md
142
README.md
@@ -1,31 +1,46 @@
|
||||
<div align="center">
|
||||
<h1><img src="./assets/fire.svg" width=30, height=30>
|
||||
𝚃𝚎𝚡𝚃𝚎𝚕𝚕𝚎𝚛 <img src="./assets/fire.svg" width=30, height=30> </h1>
|
||||
|
||||
<p align="center">
|
||||
English | <a href="./assets/README_zh.md">中文版本</a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<img src="./assets/web_demo.gif" alt="TexTeller_demo" width=800>
|
||||
</p>
|
||||
|
||||
<h1>
|
||||
<img src="./assets/fire.svg" width=30, height=30>
|
||||
𝚃𝚎𝚡𝚃𝚎𝚕𝚕𝚎𝚛
|
||||
<img src="./assets/fire.svg" width=30, height=30>
|
||||
</h1>
|
||||
<p align="center">
|
||||
English | <a href="./assets/README_zh.md">中文</a>
|
||||
</p>
|
||||
<p align="center">
|
||||
<img src="./assets/web_demo.gif" alt="TexTeller_demo" width=800>
|
||||
</p>
|
||||
</div>
|
||||
|
||||
TexTeller is a ViT-based model designed for end-to-end formula recognition. It can recognize formulas in natural images and convert them into LaTeX-style formulas.
|
||||
TexTeller is an end-to-end formula recognition model based on ViT, capable of converting images into corresponding LaTeX formulas.
|
||||
|
||||
TexTeller is trained on a larger dataset of image-formula pairs (a 550K dataset available [here](https://huggingface.co/datasets/OleehyO/latex-formulas)), **exhibits superior generalization ability and higher accuracy compared to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)**, which uses approximately 100K data points. This larger dataset enables TexTeller to cover most usage scenarios more effectively( **excluding scanned images and handwritten formulas** ).
|
||||
> A TexTeller checkpoint trained on a 5.5M dataset will be released soon.
|
||||
TexTeller was trained with ~~550K~~7.5M image-formula pairs (dataset available [here](https://huggingface.co/datasets/OleehyO/latex-formulas)), compared to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) which used a 100K dataset, TexTeller has **stronger generalization abilities** and **higher accuracy**, covering most use cases (**except for scanned images and handwritten formulas**).
|
||||
|
||||
## Prerequisites
|
||||
> ~~We will soon release a TexTeller checkpoint trained on a 7.5M dataset~~
|
||||
|
||||
## 🔄 Change Log
|
||||
|
||||
* 📮[2024-03-24] TexTeller 2.0 released! The training data for TexTeller 2.0 has been increased to 7.5M (about **15 times more** than TexTeller 1.0 and also improved in data quality). The trained TexTeller 2.0 demonstrated **superior performance** in the test set, especially in recognizing rare symbols, complex multi-line formulas, and matrices.
|
||||
|
||||
## 🔑 Prerequisites
|
||||
|
||||
python=3.10
|
||||
|
||||
pytorch
|
||||
|
||||
> Note: Only CUDA version >= 12.0 have been fully tested, so we recommend using CUDA version>=12.0
|
||||
> Note: Only CUDA versions >= 12.0 have been fully tested, so it is recommended to use CUDA version >= 12.0
|
||||
|
||||
## Getting Started
|
||||
## 🖼 About Rendering LaTeX as Images
|
||||
|
||||
* **Install XeLaTex** and ensure `xelatex` can be called directly from the command line.
|
||||
|
||||
* To ensure correct rendering of the predicted formulas, **include the following packages** in your `.tex` file:
|
||||
|
||||
```tex
|
||||
\usepackage{multirow,multicol,amsmath,amsfonts,amssymb,mathtools,bm,mathrsfs,wasysym,amsbsy,upgreek,mathalfa,stmaryrd,mathrsfs,dsfont,amsthm,amsmath,multirow}
|
||||
```
|
||||
|
||||
## 🚀 Getting Started
|
||||
|
||||
1. Clone the repository:
|
||||
|
||||
@@ -33,13 +48,13 @@ pytorch
|
||||
git clone https://github.com/OleehyO/TexTeller
|
||||
```
|
||||
|
||||
2. After [pytorch installation](https://pytorch.org/get-started/locally/#start-locally), install the required packages:
|
||||
2. After [installing pytorch](https://pytorch.org/get-started/locally/#start-locally), install the project's dependencies:
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
3. Navigate to the `TexTeller/src` directory and run the following command to perform inference:
|
||||
3. Enter the `TexTeller/src` directory and run the following command in the terminal to start inference:
|
||||
|
||||
```bash
|
||||
python inference.py -img "/path/to/image.{jpg,png}"
|
||||
@@ -47,87 +62,104 @@ pytorch
|
||||
#+e.g. python inference.py -img "./img.jpg" -cuda
|
||||
```
|
||||
|
||||
> Checkpoints will be downloaded in your first run.
|
||||
> The first time you run it, the required checkpoints will be downloaded from Hugging Face
|
||||
|
||||
## Web Demo
|
||||
## 🌐 Web Demo
|
||||
|
||||
You can also run the web demo by navigating to the `TexTeller/src` directory and running the following command:
|
||||
To start the web demo, you need to first enter the `TexTeller/src` directory, then run the following command
|
||||
|
||||
```bash
|
||||
./start_web.sh
|
||||
```
|
||||
|
||||
Then go to `http://localhost:8501` in your browser to run TexTeller in the web.
|
||||
Then, enter `http://localhost:8501` in your browser to see the web demo
|
||||
|
||||
> You can change the default settings in `start_web.sh`, such as inference with GPU(e.g. `USE_CUDA=True`) or increase the number of beams(e.g. `NUM_BEAM=3`) for higher accuracy.
|
||||
> You can change the default configuration of `start_web.sh`, for example, to use GPU for inference (e.g. `USE_CUDA=True`) or to increase the number of beams (e.g. `NUM_BEAM=3`) to achieve higher accuracy
|
||||
|
||||
## API
|
||||
**NOTE:** If you want to directly render the prediction results as images on the web (for example, to check if the prediction is correct), you need to ensure [xelatex is correctly installed](https://github.com/OleehyO/TexTeller?tab=readme-ov-file#Rendering-Predicted-Results)
|
||||
|
||||
We use [ray serve](https://github.com/ray-project/ray) to provide a simple API for using TexTeller in your own projects. To start the server, navigate to the `TexTeller/src` directory and run the following command:
|
||||
## 📡 API Usage
|
||||
|
||||
We use [ray serve](https://github.com/ray-project/ray) to provide an API interface for TexTeller, allowing you to integrate TexTeller into your own projects. To start the server, you first need to enter the `TexTeller/src` directory and then run the following command:
|
||||
|
||||
```bash
|
||||
python server.py # default settings
|
||||
```
|
||||
|
||||
You can pass the following arguments to the `server.py` script to get custom inference settings(e.g. `python server.py --use_gpu` to enable GPU inference):
|
||||
You can pass the following arguments to `server.py` to change the server's inference settings (e.g. `python server.py --use_gpu` to enable GPU inference):
|
||||
|
||||
| Argument | Description |
|
||||
| Parameter | Description |
|
||||
| --- | --- |
|
||||
| `-ckpt` | Path to the checkpoint file to load, default is TexTeller pretrained model. |
|
||||
| `-tknz` | Path to the tokenizer, default is TexTeller tokenizer. |
|
||||
| `-port` | Port number to run the server on, *default is 8000*. |
|
||||
| `--use_gpu` | Whether to use GPU for inference. |
|
||||
| `--num_beams` | Number of beams to use for beam search decoding, *default is 1*. |
|
||||
| `--num_replicas` | Number of replicas to run the server on, *default is 1*. You can use this to get higher throughput. |
|
||||
| `--ncpu_per_replica` | Number of CPU cores to use per replica, *default is 1*. |
|
||||
| `--ngpu_per_replica` | Number of GPUs to use per replica, *default is 1*. You can set this to 0~1 to run multiple replicas on a single GPU(if --num_replicas 2, --ngpu_per_replica 0.7, then 2 gpus are required) |
|
||||
| `-ckpt` | The path to the weights file, *default is TexTeller's pretrained weights*.|
|
||||
| `-tknz` | The path to the tokenizer, *default is TexTeller's tokenizer*.|
|
||||
| `-port` | The server's service port, *default is 8000*. |
|
||||
| `--use_gpu` | Whether to use GPU for inference, *default is CPU*. |
|
||||
| `--num_beams` | The number of beams for beam search, *default is 1*. |
|
||||
| `--num_replicas` | The number of service replicas to run on the server, *default is 1 replica*. You can use more replicas to achieve greater throughput.|
|
||||
| `--ncpu_per_replica` | The number of CPU cores used per service replica, *default is 1*. |
|
||||
| `--ngpu_per_replica` | The number of GPUs used per service replica, *default is 1*. You can set this value between 0 and 1 to run multiple service replicas on one GPU to share the GPU, thereby improving GPU utilization. (Note, if --num_replicas is 2, --ngpu_per_replica is 0.7, then 2 GPUs must be available) |
|
||||
|
||||
> Client demo can be found in `TexTeller/client/demo.py`, you can refer to `demo.py` to send requests to the server.
|
||||
> A client demo can be found at `TexTeller/client/demo.py`, you can refer to `demo.py` to send requests to the server
|
||||
|
||||
## Training
|
||||
## 🏋️♂️ Training
|
||||
|
||||
### Dataset
|
||||
|
||||
We provide a dataset example in `TexTeller/src/models/ocr_model/train/dataset`, and you can place your own images in the `images` directory and annotate the corresponding formula for each image in `formulas.jsonl`.
|
||||
We provide an example dataset in the `TexTeller/src/models/ocr_model/train/dataset` directory, you can place your own images in the `images` directory and annotate each image with its corresponding formula in `formulas.jsonl`.
|
||||
|
||||
After the dataset is ready, you should **change the `DIR_URL` variable** in `.../dataset/loader.py` to the path of your dataset.
|
||||
After preparing your dataset, you need to **change the `DIR_URL` variable to your own dataset's path** in `.../dataset/loader.py`
|
||||
|
||||
### Retrain the tokenizer
|
||||
### Retraining the Tokenizer
|
||||
|
||||
If you are using a different dataset, you may need to retrain the tokenizer to match your specific vocabulary. After setting up the dataset, you can do this by:
|
||||
If you are using a different dataset, you might need to retrain the tokenizer to obtain a different dictionary. After configuring your dataset, you can train your own tokenizer with the following command:
|
||||
|
||||
1. Change the line `new_tokenizer.save_pretrained('./your_dir_name')` in `TexTeller/src/models/tokenizer/train.py` to your desired output directory name.
|
||||
> To use a different vocabulary size, you should modify the `VOCAB_SIZE` parameter in the `TexTeller/src/models/globals.py`.
|
||||
1. In `TexTeller/src/models/tokenizer/train.py`, change `new_tokenizer.save_pretrained('./your_dir_name')` to your custom output directory
|
||||
> If you want to use a different dictionary size (default is 10k tokens), you need to change the `VOCAB_SIZE` variable in `TexTeller/src/models/globals.py`
|
||||
|
||||
2. Running the following command **under `TexTeller/src` directory**:
|
||||
2. **In the `TexTeller/src` directory**, run the following command:
|
||||
|
||||
```bash
|
||||
python -m models.tokenizer.train
|
||||
```
|
||||
|
||||
### Train the model
|
||||
### Training the Model
|
||||
|
||||
To train the model, you can run the following command **under `TexTeller/src` directory**:
|
||||
To train the model, you need to run the following command in the `TexTeller/src` directory:
|
||||
|
||||
```bash
|
||||
python -m models.ocr_model.train.train
|
||||
```
|
||||
|
||||
You can set your own tokenizer and checkpoint path(or fine-tune the default model checkpoint if you don't use your own tokenizer while keeping the same model architecture) in `TexTeller/src/models/ocr_model/train/train.py`.
|
||||
> Please refer to `train.py` for more details.
|
||||
You can set your own tokenizer and checkpoint paths in `TexTeller/src/models/ocr_model/train/train.py` (refer to `train.py` for more information). If you are using the same architecture and dictionary as TexTeller, you can also fine-tune TexTeller's default weights with your own dataset.
|
||||
|
||||
Model architecture and training hyperparameters can be adjusted in `TexTeller/src/globals.py` and `TexTeller/src/models/ocr_model/train/train_args.py`.
|
||||
In `TexTeller/src/globals.py` and `TexTeller/src/models/ocr_model/train/train_args.py`, you can change the model's architecture and training hyperparameters.
|
||||
|
||||
> We use the [Hugging Face Transformers](https://github.com/huggingface/transformers) library for model training, so you can find more details about the training hyperparameters in their [documentation](https://huggingface.co/docs/transformers/v4.32.1/main_classes/trainer#transformers.TrainingArguments).
|
||||
> Our training scripts use the [Hugging Face Transformers](https://github.com/huggingface/transformers) library, so you can refer to their [documentation](https://huggingface.co/docs/transformers/v4.32.1/main_classes/trainer#transformers.TrainingArguments) for more details and configurations on training parameters.
|
||||
|
||||
## To-Do
|
||||
## 🚧 Limitations
|
||||
|
||||
- [ ] Train our model with a larger amount of data(5.5M samples, and soon to be released).
|
||||
* Some complex multi-line scenarios are not well handled (e.g., long formulas mixed with matrices)
|
||||
|
||||
- [ ] Inference acceleration.
|
||||
* Does not support scanned images and PDF document recognition
|
||||
|
||||
* Does not support handwritten formulas
|
||||
|
||||
## 📅 Plans
|
||||
|
||||
- [x] ~~Train the model with a larger dataset (7.5M samples, coming soon)~~
|
||||
|
||||
- [ ] Recognition of scanned images
|
||||
|
||||
- [ ] PDF document recognition + Support for English and Chinese scenarios
|
||||
|
||||
- [ ] Inference acceleration
|
||||
|
||||
- [ ] ...
|
||||
|
||||
## Acknowledgements
|
||||
## 💖 Acknowledgments
|
||||
|
||||
Thanks to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) which has brought me a lot of inspiration, and [im2latex-100K](https://zenodo.org/records/56198#.V2px0jXT6eA) which enriches our dataset.
|
||||
|
||||
## ⭐️ Stargazers over time
|
||||
|
||||
[](https://starchart.cc/OleehyO/TexTeller)
|
||||
|
||||
@@ -1,24 +1,28 @@
|
||||
<div align="center">
|
||||
<h1><img src="./fire.svg" width=30, height=30>
|
||||
𝚃𝚎𝚡𝚃𝚎𝚕𝚕𝚎𝚛 <img src="./fire.svg" width=30, height=30> </h1>
|
||||
|
||||
<p align="center">
|
||||
<a href="../README.md">English</a> | 中文版本
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<img src="./web_demo.gif" alt="TexTeller_demo" width=800>
|
||||
</p>
|
||||
|
||||
<h1>
|
||||
<img src="./fire.svg" width=30, height=30>
|
||||
𝚃𝚎𝚡𝚃𝚎𝚕𝚕𝚎𝚛
|
||||
<img src="./fire.svg" width=30, height=30>
|
||||
</h1>
|
||||
<p align="center">
|
||||
<a href="../README.md">English</a> | 中文
|
||||
</p>
|
||||
<p align="center">
|
||||
<img src="./web_demo.gif" alt="TexTeller_demo" width=800>
|
||||
</p>
|
||||
</div>
|
||||
|
||||
TexTeller是一个基于ViT的端到端公式识别模型,可以把图片转换为对应的latex公式
|
||||
|
||||
TexTeller用了550K的图片-公式对进行训练(数据集可以在[这里](https://huggingface.co/datasets/OleehyO/latex-formulas)获取),相比于[LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)(使用了一个100K的数据集),TexTeller具有**更强的泛化能力**以及**更高的准确率**,可以覆盖大部分的使用场景(**扫描图片,手写公式除外**)。
|
||||
TexTeller用了~~550K~~7.5M的图片-公式对进行训练(数据集可以在[这里](https://huggingface.co/datasets/OleehyO/latex-formulas)获取),相比于[LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)(使用了一个100K的数据集),TexTeller具有**更强的泛化能力**以及**更高的准确率**,可以覆盖大部分的使用场景(**扫描图片,手写公式除外**)。
|
||||
|
||||
> 我们马上就会发布一个使用5.5M数据集进行训练的TexTeller checkpoint
|
||||
> ~~我们马上就会发布一个使用7.5M数据集进行训练的TexTeller checkpoint~~
|
||||
|
||||
## 前置条件
|
||||
## 🔄 变更信息
|
||||
|
||||
* 📮[2024-03-24] TexTeller2.0发布!TexTeller2.0的训练数据增大到了7.5M(相较于TexTeller1.0**增加了~15倍**并且数据质量也有所改善)。训练后的TexTeller2.0在测试集中展现出了**更加优越的性能**,尤其在生僻符号、复杂多行、矩阵的识别场景中。
|
||||
|
||||
## 🔑 前置条件
|
||||
|
||||
python=3.10
|
||||
|
||||
@@ -26,7 +30,17 @@ pytorch
|
||||
|
||||
> 注意: 只有CUDA版本>= 12.0被完全测试过,所以最好使用>= 12.0的CUDA版本
|
||||
|
||||
## Getting Started
|
||||
## 🖼 关于把latex渲染成图片
|
||||
|
||||
* **安装XeLaTex** 并确保`xelatex`可以直接被命令行调用。
|
||||
|
||||
* 为了确保正确渲染预测出的公式, 需要在`.tex`文件中**引入以下宏包**:
|
||||
|
||||
```tex
|
||||
\usepackage{multirow,multicol,amsmath,amsfonts,amssymb,mathtools,bm,mathrsfs,wasysym,amsbsy,upgreek,mathalfa,stmaryrd,mathrsfs,dsfont,amsthm,amsmath,multirow}
|
||||
```
|
||||
|
||||
## 🚀 开搞
|
||||
|
||||
1. 克隆本仓库:
|
||||
|
||||
@@ -50,7 +64,7 @@ pytorch
|
||||
|
||||
> 第一次运行时会在hugging face上下载所需要的checkpoints
|
||||
|
||||
## FAQ:无法连接到Hugging Face
|
||||
## ❓ 常见问题:无法连接到Hugging Face
|
||||
|
||||
默认情况下,会在Hugging Face中下载模型权重,**如果你的远端服务器无法连接到Hugging Face**,你可以通过以下命令进行加载:
|
||||
|
||||
@@ -78,7 +92,7 @@ pytorch
|
||||
|
||||
2. 把这个目录上传远端服务器,并在`TexTeller/src/models/ocr_model/utils/metrics.py`中把`evaluate.load('google_bleu')`改为`evaluate.load('your/dir/path/google_bleu.py')`
|
||||
|
||||
## Web Demo
|
||||
## 🌐 网页演示
|
||||
|
||||
要想启动web demo,你需要先进入 `TexTeller/src` 目录,然后运行以下命令
|
||||
|
||||
@@ -90,7 +104,9 @@ pytorch
|
||||
|
||||
> 你可以改变`start_web.sh`的默认配置, 例如使用GPU进行推理(e.g. `USE_CUDA=True`) 或者增加beams的数量(e.g. `NUM_BEAM=3`)来获得更高的精确度
|
||||
|
||||
## API
|
||||
**NOTE:** 如果你想直接把预测结果在网页上渲染成图片(比如为了检查预测结果是否正确)你需要确保[xelatex被正确安装](https://github.com/OleehyO/TexTeller?tab=readme-ov-file#Rendering-Predicted-Results)
|
||||
|
||||
## 📡 API调用
|
||||
|
||||
我们使用[ray serve](https://github.com/ray-project/ray)来对外提供一个TexTeller的API接口,通过使用这个接口,你可以把TexTeller整合到自己的项目里。要想启动server,你需要先进入`TexTeller/src`目录然后运行以下命令:
|
||||
|
||||
@@ -100,28 +116,28 @@ python server.py # default settings
|
||||
|
||||
你可以给`server.py`传递以下参数来改变server的推理设置(e.g. `python server.py --use_gpu` 来启动GPU推理):
|
||||
|
||||
| Argument | Description |
|
||||
| 参数 | 描述 |
|
||||
| --- | --- |
|
||||
| `-ckpt` | Path to the checkpoint file to load, default is TexTeller pretrained model. |
|
||||
| `-tknz` | Path to the tokenizer, default is TexTeller tokenizer. |
|
||||
| `-port` | Port number to run the server on, *default is 8000*. |
|
||||
| `--use_gpu` | Whether to use GPU for inference. |
|
||||
| `--num_beams` | Number of beams to use for beam search decoding, *default is 1*. |
|
||||
| `--num_replicas` | Number of replicas to run the server on, *default is 1*. You can use this to get higher throughput. |
|
||||
| `--ncpu_per_replica` | Number of CPU cores to use per replica, *default is 1*. |
|
||||
| `--ngpu_per_replica` | Number of GPUs to use per replica, *default is 1*. You can set this to 0~1 to run multiple replicas on a single GPU(if --num_replicas 2, --ngpu_per_replica 0.7, then 2 gpus are required) |
|
||||
| `-ckpt` | 权重文件的路径,*默认为TexTeller的预训练权重*。|
|
||||
| `-tknz` | 分词器的路径, *默认为TexTeller的分词器*。|
|
||||
| `-port` | 服务器的服务端口, *默认是8000*。 |
|
||||
| `--use_gpu` | 是否使用GPU推理,*默认为CPU*。 |
|
||||
| `--num_beams` | beam search的beam数量, *默认是1*。 |
|
||||
| `--num_replicas` | 在服务器上运行的服务副本数量, *默认1个副本*。你可以使用更多的副本来获取更大的吞吐量。|
|
||||
| `--ncpu_per_replica` | 每个服务副本所用的CPU核心数,*默认为1*。 |
|
||||
| `--ngpu_per_replica` | 每个服务副本所用的GPU数量,*默认为1*。你可以把这个值设置成 0~1之间的数,这样会在一个GPU上运行多个服务副本来共享GPU,从而提高GPU的利用率。(注意,如果 --num_replicas 2, --ngpu_per_replica 0.7, 那么就必须要有2个GPU可用) |
|
||||
|
||||
> 一个客户端demo可以在`TexTeller/client/demo.py`找到,你可以参考`demo.py`来给server发送请求
|
||||
|
||||
## Training
|
||||
## 🏋️♂️ 训练
|
||||
|
||||
### Dataset
|
||||
### 数据集
|
||||
|
||||
我们在`TexTeller/src/models/ocr_model/train/dataset`目录中提供了一个数据集的例子,你可以把自己的图片放在`images`目录然后在`formulas.jsonl`中为每张图片标注对应的公式。
|
||||
|
||||
准备好数据集后,你需要在`.../dataset/loader.py`中把 **`DIR_URL`变量改成你自己数据集的路径**
|
||||
|
||||
### Retrain the tokenizer
|
||||
### 重新训练分词器
|
||||
|
||||
如果你使用了不一样的数据集,你可能需要重新训练tokenizer来得到一个不一样的字典。配置好数据集后,可以通过以下命令来训练自己的tokenizer:
|
||||
|
||||
@@ -134,7 +150,7 @@ python server.py # default settings
|
||||
python -m models.tokenizer.train
|
||||
```
|
||||
|
||||
### Train the model
|
||||
### 训练模型
|
||||
|
||||
要想训练模型, 你需要在`TexTeller/src`目录下运行以下命令:
|
||||
|
||||
@@ -148,14 +164,38 @@ python -m models.ocr_model.train.train
|
||||
|
||||
> 我们的训练脚本使用了[Hugging Face Transformers](https://github.com/huggingface/transformers)库, 所以你可以参考他们提供的[文档](https://huggingface.co/docs/transformers/v4.32.1/main_classes/trainer#transformers.TrainingArguments)来获取更多训练参数的细节以及配置。
|
||||
|
||||
## To-Do
|
||||
## 🚧 不足
|
||||
|
||||
- [ ] 使用更大的数据集来训练模型(5.5M样本,即将发布)
|
||||
* 部分细节很多的公式无法做到100%的准确率
|
||||
|
||||
<img src="" width=30, height=30>
|
||||
|
||||
* 部分复杂的大型多行公式识别效果不佳(例如长公式与矩阵混合)
|
||||
|
||||
<img src="" width=30, height=30>
|
||||
|
||||
> 如果遇到这种情况,你可以尝试把大型的多行公式分成多个小的子公式来识别。
|
||||
|
||||
* 不支持扫描图片以及PDF文档识别
|
||||
|
||||
* 不支持手写体公式
|
||||
|
||||
## 📅 计划
|
||||
|
||||
- [x] ~~使用更大的数据集来训练模型(7.5M样本,即将发布)~~
|
||||
|
||||
- [ ] 扫描图片识别
|
||||
|
||||
- [ ] PDF文档识别 + 中英文场景支持
|
||||
|
||||
- [ ] 推理加速
|
||||
|
||||
- [ ] ...
|
||||
|
||||
## Acknowledgements
|
||||
## 💖 感谢
|
||||
|
||||
Thanks to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) which has brought me a lot of inspiration, and [im2latex-100K](https://zenodo.org/records/56198#.V2px0jXT6eA) which enriches our dataset.
|
||||
Thanks to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) which has brought me a lot of inspiration, and [im2latex-100K](https://zenodo.org/records/56198#.V2px0jXT6eA) which enriches our dataset.
|
||||
|
||||
## ⭐️ 观星曲线
|
||||
|
||||
[](https://starchart.cc/OleehyO/TexTeller)
|
||||
|
||||
@@ -7,4 +7,6 @@ ray[serve]
|
||||
accelerate
|
||||
tensorboardX
|
||||
nltk
|
||||
python-multipart
|
||||
python-multipart
|
||||
|
||||
pdf2image
|
||||
@@ -3,7 +3,7 @@ IMAGE_MEAN = 0.9545467
|
||||
IMAGE_STD = 0.15394445
|
||||
|
||||
# Vocabulary size for TexTeller
|
||||
VOCAB_SIZE = 10000
|
||||
VOCAB_SIZE = 15000
|
||||
|
||||
# Fixed size for input image for TexTeller
|
||||
FIXED_IMG_SIZE = 448
|
||||
@@ -12,7 +12,7 @@ FIXED_IMG_SIZE = 448
|
||||
IMG_CHANNELS = 1 # grayscale image
|
||||
|
||||
# Max size of token for embedding
|
||||
MAX_TOKEN_SIZE = 512
|
||||
MAX_TOKEN_SIZE = 1024
|
||||
|
||||
# Scaling ratio for random resizing when training
|
||||
MAX_RESIZE_RATIO = 1.15
|
||||
|
||||
@@ -17,7 +17,7 @@ from transformers import (
|
||||
|
||||
|
||||
class TexTeller(VisionEncoderDecoderModel):
|
||||
REPO_NAME = 'OleehyO/TexTeller'
|
||||
REPO_NAME = '/home/lhy/code/TexTeller/src/models/ocr_model/train/train_result/TexTellerv2/checkpoint-356000'
|
||||
def __init__(self, decoder_path=None, tokenizer_path=None):
|
||||
encoder = ViTModel(ViTConfig(
|
||||
image_size=FIXED_IMG_SIZE,
|
||||
|
||||
186
src/web.py
186
src/web.py
@@ -2,13 +2,65 @@ import os
|
||||
import io
|
||||
import base64
|
||||
import tempfile
|
||||
import time
|
||||
import subprocess
|
||||
import shutil
|
||||
import streamlit as st
|
||||
|
||||
from PIL import Image
|
||||
from PIL import Image, ImageChops
|
||||
from pathlib import Path
|
||||
from pdf2image import convert_from_path
|
||||
from models.ocr_model.utils.inference import inference
|
||||
from models.ocr_model.model.TexTeller import TexTeller
|
||||
|
||||
|
||||
html_string = '''
|
||||
<h1 style="color: black; text-align: center;">
|
||||
<img src="https://slackmojis.com/emojis/429-troll/download" width="50">
|
||||
TexTeller
|
||||
<img src="https://slackmojis.com/emojis/429-troll/download" width="50">
|
||||
</h1>
|
||||
'''
|
||||
|
||||
suc_gif_html = '''
|
||||
<h1 style="color: black; text-align: center;">
|
||||
<img src="https://slackmojis.com/emojis/90621-clapclap-e/download" width="50">
|
||||
<img src="https://slackmojis.com/emojis/90621-clapclap-e/download" width="50">
|
||||
<img src="https://slackmojis.com/emojis/90621-clapclap-e/download" width="50">
|
||||
</h1>
|
||||
'''
|
||||
|
||||
fail_gif_html = '''
|
||||
<h1 style="color: black; text-align: center;">
|
||||
<img src="https://slackmojis.com/emojis/51439-allthethings_intensifies/download" >
|
||||
<img src="https://slackmojis.com/emojis/51439-allthethings_intensifies/download" >
|
||||
<img src="https://slackmojis.com/emojis/51439-allthethings_intensifies/download" >
|
||||
</h1>
|
||||
'''
|
||||
|
||||
tex = r'''
|
||||
\documentclass{{article}}
|
||||
\usepackage[
|
||||
left=1in, % 左边距
|
||||
right=1in, % 右边距
|
||||
top=1in, % 上边距
|
||||
bottom=1in,% 下边距
|
||||
paperwidth=40cm, % 页面宽度
|
||||
paperheight=40cm % 页面高度,这里以A4纸为例
|
||||
]{{geometry}}
|
||||
|
||||
\usepackage[utf8]{{inputenc}}
|
||||
\usepackage{{multirow,multicol,amsmath,amsfonts,amssymb,mathtools,bm,mathrsfs,wasysym,amsbsy,upgreek,mathalfa,stmaryrd,mathrsfs,dsfont,amsthm,amsmath,multirow}}
|
||||
|
||||
\begin{{document}}
|
||||
|
||||
{formula}
|
||||
|
||||
\pagenumbering{{gobble}}
|
||||
\end{{document}}
|
||||
'''
|
||||
|
||||
|
||||
@st.cache_resource
|
||||
def get_model():
|
||||
return TexTeller.from_pretrained(os.environ['CHECKPOINT_DIR'])
|
||||
@@ -18,24 +70,74 @@ def get_model():
|
||||
def get_tokenizer():
|
||||
return TexTeller.get_tokenizer(os.environ['TOKENIZER_DIR'])
|
||||
|
||||
def get_image_base64(img_file):
|
||||
buffered = io.BytesIO()
|
||||
img_file.seek(0)
|
||||
img = Image.open(img_file)
|
||||
img.save(buffered, format="PNG")
|
||||
return base64.b64encode(buffered.getvalue()).decode()
|
||||
|
||||
def rendering(formula: str, out_img_path: Path) -> bool:
|
||||
build_dir = out_img_path / 'build'
|
||||
build_dir.mkdir(exist_ok=True, parents=True)
|
||||
f = build_dir / 'formula.tex'
|
||||
f.touch(exist_ok=True)
|
||||
f.write_text(tex.format(formula=formula))
|
||||
|
||||
p = subprocess.Popen([
|
||||
'xelatex',
|
||||
f'-output-directory={build_dir}',
|
||||
'-interaction=nonstopmode',
|
||||
'-halt-on-error',
|
||||
f'{f}'
|
||||
])
|
||||
p.communicate()
|
||||
return p.returncode == 0
|
||||
|
||||
def pdf_to_pngbytes(pdf_path):
|
||||
images = convert_from_path(pdf_path, first_page=1, last_page=1)
|
||||
trimmed_images = trim(images[0])
|
||||
png_image_bytes = io.BytesIO()
|
||||
trimmed_images.save(png_image_bytes, format='PNG')
|
||||
png_image_bytes.seek(0)
|
||||
return png_image_bytes
|
||||
|
||||
def trim(im):
|
||||
bg = Image.new(im.mode, im.size, im.getpixel((0,0)))
|
||||
diff = ImageChops.difference(im, bg)
|
||||
diff = ImageChops.add(diff, diff, 2.0, -100)
|
||||
bbox = diff.getbbox()
|
||||
if bbox:
|
||||
return im.crop(bbox)
|
||||
return im
|
||||
|
||||
|
||||
model = get_model()
|
||||
tokenizer = get_tokenizer()
|
||||
# check if xelatex is installed
|
||||
xelatex_installed = os.system('which xelatex > /dev/null 2>&1') == 0
|
||||
|
||||
if "start" not in st.session_state:
|
||||
st.session_state["start"] = 1
|
||||
|
||||
if xelatex_installed:
|
||||
st.toast('Hooray!', icon='🎉')
|
||||
time.sleep(0.5)
|
||||
st.toast("Xelatex have been detected.", icon='✅')
|
||||
else:
|
||||
st.error('xelatex is not installed. Please install it before using TexTeller.')
|
||||
|
||||
|
||||
# ============================ pages =============================== #
|
||||
html_string = '''
|
||||
<h1 style="color: orange; text-align: center;">
|
||||
✨ TexTeller ✨
|
||||
</h1>
|
||||
'''
|
||||
|
||||
st.markdown(html_string, unsafe_allow_html=True)
|
||||
|
||||
if "start" not in st.session_state:
|
||||
st.balloons()
|
||||
st.session_state["start"] = 1
|
||||
uploaded_file = st.file_uploader("",type=['jpg', 'png', 'pdf'])
|
||||
|
||||
uploaded_file = st.file_uploader("",type=['jpg', 'png'])
|
||||
if xelatex_installed:
|
||||
st.caption('🥳 Xelatex have been detected, rendered image will be displayed in the web page.')
|
||||
else:
|
||||
st.caption('😭 Xelatex is not detected, please check the resulting latex code by yourself, or check ... to have your xelatex setup ready.')
|
||||
|
||||
if uploaded_file:
|
||||
img = Image.open(uploaded_file)
|
||||
@@ -44,13 +146,6 @@ if uploaded_file:
|
||||
png_file_path = os.path.join(temp_dir, 'image.png')
|
||||
img.save(png_file_path, 'PNG')
|
||||
|
||||
def get_image_base64(img_file):
|
||||
buffered = io.BytesIO()
|
||||
img_file.seek(0)
|
||||
img = Image.open(img_file)
|
||||
img.save(buffered, format="PNG")
|
||||
return base64.b64encode(buffered.getvalue()).decode()
|
||||
|
||||
img_base64 = get_image_base64(uploaded_file)
|
||||
|
||||
st.markdown(f"""
|
||||
@@ -62,7 +157,8 @@ if uploaded_file:
|
||||
display: block;
|
||||
margin-left: auto;
|
||||
margin-right: auto;
|
||||
max-width: 700px;
|
||||
max-width: 500px;
|
||||
max-height: 500px;
|
||||
}}
|
||||
</style>
|
||||
<div class="centered-container">
|
||||
@@ -71,7 +167,6 @@ if uploaded_file:
|
||||
</div>
|
||||
""", unsafe_allow_html=True)
|
||||
|
||||
st.write("")
|
||||
st.write("")
|
||||
|
||||
with st.spinner("Predicting..."):
|
||||
@@ -83,11 +178,54 @@ if uploaded_file:
|
||||
True if os.environ['USE_CUDA'] == 'True' else False,
|
||||
int(os.environ['NUM_BEAM'])
|
||||
)[0]
|
||||
if not xelatex_installed:
|
||||
st.markdown(fail_gif_html, unsafe_allow_html=True)
|
||||
st.warning('Unable to find xelatex to render image. Please check the prediction results yourself.', icon="🤡")
|
||||
txt = st.text_area(
|
||||
":red[Predicted formula]",
|
||||
TeXTeller_result,
|
||||
height=150,
|
||||
)
|
||||
else:
|
||||
is_successed = rendering(TeXTeller_result, Path(temp_dir))
|
||||
if is_successed:
|
||||
# st.code(TeXTeller_result, language='latex')
|
||||
|
||||
# st.subheader(':rainbow[Predict] :sunglasses:', divider='rainbow')
|
||||
st.subheader(':sunglasses:', divider='gray')
|
||||
st.latex(TeXTeller_result)
|
||||
st.code(TeXTeller_result, language='latex')
|
||||
st.success('Done!')
|
||||
img_base64 = get_image_base64(pdf_to_pngbytes(Path(temp_dir) / 'build' / 'formula.pdf'))
|
||||
st.markdown(suc_gif_html, unsafe_allow_html=True)
|
||||
st.success('Successfully rendered!', icon="✅")
|
||||
txt = st.text_area(
|
||||
":red[Predicted formula]",
|
||||
TeXTeller_result,
|
||||
height=150,
|
||||
)
|
||||
# st.latex(TeXTeller_result)
|
||||
st.markdown(f"""
|
||||
<style>
|
||||
.centered-container {{
|
||||
text-align: center;
|
||||
}}
|
||||
.centered-image {{
|
||||
display: block;
|
||||
margin-left: auto;
|
||||
margin-right: auto;
|
||||
max-width: 500px;
|
||||
max-height: 500px;
|
||||
}}
|
||||
</style>
|
||||
<div class="centered-container">
|
||||
<img src="data:image/png;base64,{img_base64}" class="centered-image" alt="Input image">
|
||||
</div>
|
||||
""", unsafe_allow_html=True)
|
||||
else:
|
||||
st.markdown(fail_gif_html, unsafe_allow_html=True)
|
||||
st.error('Rendering failed. You can try using a higher resolution image or splitting the multi line formula into a single line for better results.', icon="❌")
|
||||
txt = st.text_area(
|
||||
":red[Predicted formula]",
|
||||
TeXTeller_result,
|
||||
height=150,
|
||||
)
|
||||
|
||||
shutil.rmtree(temp_dir)
|
||||
|
||||
# ============================ pages =============================== #
|
||||
|
||||
Reference in New Issue
Block a user