Update README
This commit is contained in:
203
README.md
203
README.md
@@ -7,30 +7,106 @@
|
||||
<img src="./assets/fire.svg" width=30, height=30>
|
||||
</h1>
|
||||
<p align="center">
|
||||
🤗 <a href="https://huggingface.co/OleehyO/TexTeller"> Hugging Face</a>
|
||||
🤗 <a href="https://huggingface.co/OleehyO/TexTeller"> Hugging Face </a>
|
||||
</p>
|
||||
<!-- <p align="center">
|
||||
<img src="./assets/web_demo.gif" alt="TexTeller_demo" width=800>
|
||||
</p> -->
|
||||
|
||||
[](https://opensource.org/licenses/Apache-2.0)
|
||||
[](https://github.com/OleehyO/TexTeller/issues)
|
||||
[](https://huggingface.co/datasets/OleehyO/latex-formulas)
|
||||
[](https://huggingface.co/OleehyO/TexTeller)
|
||||
|
||||
</div>
|
||||
|
||||
https://github.com/OleehyO/TexTeller/assets/56267907/b23b2b2e-a663-4abb-b013-bd47238d513b
|
||||
<!-- <p align="center">
|
||||
|
||||
TexTeller is an end-to-end formula recognition model based on ViT, capable of converting images into corresponding LaTeX formulas.
|
||||
<a href="https://opensource.org/licenses/Apache-2.0">
|
||||
<img src="https://img.shields.io/badge/License-Apache_2.0-blue.svg" alt="License">
|
||||
</a>
|
||||
<a href="https://github.com/OleehyO/TexTeller/issues">
|
||||
<img src="https://img.shields.io/badge/Maintained%3F-yes-green.svg" alt="Maintenance">
|
||||
</a>
|
||||
<a href="https://github.com/OleehyO/TexTeller/pulls">
|
||||
<img src="https://img.shields.io/badge/Contributions-welcome-brightgreen.svg?style=flat" alt="Contributions welcome">
|
||||
</a>
|
||||
<a href="https://huggingface.co/datasets/OleehyO/latex-formulas">
|
||||
<img src="https://img.shields.io/badge/Data-Texteller1.0-brightgreen.svg" alt="Data">
|
||||
</a>
|
||||
<a href="https://huggingface.co/OleehyO/TexTeller">
|
||||
<img src="https://img.shields.io/badge/Weights-Texteller3.0-yellow.svg" alt="Weights">
|
||||
</a>
|
||||
|
||||
TexTeller was trained with 7.5M image-formula pairs (dataset available [here](https://huggingface.co/datasets/OleehyO/latex-formulas)), compared to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) which used a 100K dataset, TexTeller has **stronger generalization abilities** and **higher accuracy**, covering most use cases (**except for scanned images and handwritten formulas**).
|
||||
</p> -->
|
||||
|
||||
> If you find this project helpful, please don't forget to give it a star⭐️
|
||||
https://github.com/OleehyO/TexTeller/assets/56267907/532d1471-a72e-4960-9677-ec6c19db289f
|
||||
|
||||
TexTeller is an end-to-end formula recognition model based on [TrOCR](https://arxiv.org/abs/2109.10282), capable of converting images into corresponding LaTeX formulas.
|
||||
|
||||
TexTeller was trained with **80M image-formula pairs** (previous dataset can be obtained [here](https://huggingface.co/datasets/OleehyO/latex-formulas)), compared to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) which used a 100K dataset, TexTeller has **stronger generalization abilities** and **higher accuracy**, covering most use cases.
|
||||
|
||||
>[!NOTE]
|
||||
> If you would like to provide feedback or suggestions for this project, feel free to start a discussion in the [Discussions section](https://github.com/OleehyO/TexTeller/discussions).
|
||||
>
|
||||
> Additionally, if you find this project helpful, please don't forget to give it a star⭐️🙏️
|
||||
|
||||
---
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td>
|
||||
|
||||
## 🔖 Table of Contents
|
||||
- [Change Log](#-change-log)
|
||||
- [Getting Started](#-getting-started)
|
||||
- [Web Demo](#-web-demo)
|
||||
- [Formula Detection](#-formula-detection)
|
||||
- [API Usage](#-api-usage)
|
||||
- [Training](#️️-training)
|
||||
- [Plans](#-plans)
|
||||
- [Stargazers over time](#️-stargazers-over-time)
|
||||
- [Contributors](#-contributors)
|
||||
|
||||
</td>
|
||||
<td>
|
||||
|
||||
<div align="center">
|
||||
<figure>
|
||||
<img src="assets/cover.png" width="800">
|
||||
<figcaption>
|
||||
<p>Images that can be recognized by TexTeller</p>
|
||||
</figcaption>
|
||||
</figure>
|
||||
<div>
|
||||
<p>
|
||||
Thanks to the
|
||||
<i>
|
||||
Super Computing Platform of Beijing University of Posts and Telecommunications
|
||||
</i>
|
||||
for supporting this work😘
|
||||
</p>
|
||||
<!-- <img src="assets/scss.png" width="200"> -->
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
## 🔄 Change Log
|
||||
|
||||
* 📮[2024-05-02] Support mixed Chinese English formula recognition(Beta).
|
||||
- 📮[2024-06-06] **TexTeller3.0 released!** The training data has been increased to **80M** (**10x more than** TexTeller2.0 and also improved in data diversity). TexTeller3.0's new features:
|
||||
|
||||
* 📮[2024-04-12] Trained a **formula detection model**, thereby enhancing the capability to detect and recognize formulas in entire documents (whole-image inference)!
|
||||
- Support scanned image, handwritten formulas, English(Chinese) mixed formulas.
|
||||
|
||||
* 📮[2024-03-25] TexTeller 2.0 released! The training data for TexTeller 2.0 has been increased to 7.5M (about **15 times more** than TexTeller 1.0 and also improved in data quality). The trained TexTeller 2.0 demonstrated **superior performance** in the test set, especially in recognizing rare symbols, complex multi-line formulas, and matrices.
|
||||
- OCR abilities in both Chinese and English for printed images.
|
||||
|
||||
> [There](./assets/test.pdf) are more test images here and a horizontal comparison of recognition models from different companies.
|
||||
- 📮[2024-05-02] Support **paragraph recognition**.
|
||||
|
||||
- 📮[2024-04-12] **Formula detection model** released!
|
||||
|
||||
- 📮[2024-03-25] TexTeller2.0 released! The training data for TexTeller2.0 has been increased to 7.5M (15x more than TexTeller1.0 and also improved in data quality). The trained TexTeller2.0 demonstrated **superior performance** in the test set, especially in recognizing rare symbols, complex multi-line formulas, and matrices.
|
||||
|
||||
> [Here](./assets/test.pdf) are more test images and a horizontal comparison of various recognition models.
|
||||
|
||||
## 🚀 Getting Started
|
||||
|
||||
@@ -46,24 +122,45 @@ TexTeller was trained with 7.5M image-formula pairs (dataset available [here](ht
|
||||
pip install texteller
|
||||
```
|
||||
|
||||
3. Enter the `TexTeller/src` directory and run the following command in the terminal to start inference:
|
||||
3. Enter the `src/` directory and run the following command in the terminal to start inference:
|
||||
|
||||
```bash
|
||||
python inference.py -img "/path/to/image.{jpg,png}"
|
||||
# use --inference-mode option to enable GPU(cuda or mps) inference
|
||||
#+e.g. python inference.py -img "img.jpg" --inference-mode cuda
|
||||
# use -mix option to enable mixed text and formula recognition
|
||||
#+e.g. python inference.py -img "img.jpg" -mix
|
||||
```
|
||||
|
||||
> The first time you run it, the required checkpoints will be downloaded from Hugging Face
|
||||
> The first time you run it, the required checkpoints will be downloaded from Hugging Face.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> If using mixed text and formula recognition, it is necessary to [download formula detection model weights](https://github.com/OleehyO/TexTeller?tab=readme-ov-file#download-weights)
|
||||
### Paragraph Recognition
|
||||
|
||||
As demonstrated in the video, TexTeller is also capable of recognizing entire text paragraphs. Although TexTeller has general text OCR capabilities, we still recommend using paragraph recognition for better results:
|
||||
|
||||
1. [Download the weights](https://huggingface.co/TonyLee1256/texteller_det/resolve/main/rtdetr_r50vd_6x_coco.onnx?download=true) of the formula detection model to the`src/models/det_model/model/`directory
|
||||
|
||||
2. Run `inference.py` in the `src/` directory and add the `-mix` option, the results will be output in markdown format.
|
||||
|
||||
```bash
|
||||
python inference.py -img "/path/to/image.{jpg,png}" -mix
|
||||
```
|
||||
|
||||
TexTeller uses the lightweight [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) model by default for recognizing both Chinese and English text. You can try using a larger model to achieve better recognition results for both Chinese and English:
|
||||
|
||||
| Checkpoints | Model Description | Size |
|
||||
|-------------|-------------------| ---- |
|
||||
| [ch_PP-OCRv4_det.onnx](https://huggingface.co/OleehyO/paddleocrv4.onnx/resolve/main/ch_PP-OCRv4_det.onnx?download=true) | **Default detection model**, supports Chinese-English text detection | 4.70M |
|
||||
| [ch_PP-OCRv4_server_det.onnx](https://huggingface.co/OleehyO/paddleocrv4.onnx/resolve/main/ch_PP-OCRv4_server_det.onnx?download=true) | High accuracy model, supports Chinese-English text detection | 115M |
|
||||
| [ch_PP-OCRv4_rec.onnx](https://huggingface.co/OleehyO/paddleocrv4.onnx/resolve/main/ch_PP-OCRv4_rec.onnx?download=true) | **Default recoginition model**, supports Chinese-English text recognition | 10.80M |
|
||||
| [ch_PP-OCRv4_server_rec.onnx](https://huggingface.co/OleehyO/paddleocrv4.onnx/resolve/main/ch_PP-OCRv4_server_rec.onnx?download=true) | High accuracy model, supports Chinese-English text recognition | 90.60M |
|
||||
|
||||
Place the weights of the recognition/detection model in the `det/` or `rec/` directories within `src/models/third_party/paddleocr/checkpoints/`, and rename them to `default_model.onnx`.
|
||||
|
||||
> [!NOTE]
|
||||
> Paragraph recognition cannot restore the structure of a document, it can only recognize its content.
|
||||
|
||||
## 🌐 Web Demo
|
||||
|
||||
Go to the `TexTeller/src` directory and run the following command:
|
||||
Go to the `src/` directory and run the following command:
|
||||
|
||||
```bash
|
||||
./start_web.sh
|
||||
@@ -74,43 +171,34 @@ Enter `http://localhost:8501` in a browser to view the web demo.
|
||||
> [!NOTE]
|
||||
> If you are Windows user, please run the `start_web.bat` file instead.
|
||||
|
||||
## 🧠 Full Image Inference
|
||||
## 🔍 Formula Detection
|
||||
|
||||
TexTeller also supports **formula detection and recognition** on full images, allowing for the detection of formulas throughout the image, followed by batch recognition of the formulas.
|
||||
|
||||
### Download Weights
|
||||
|
||||
Download the model weights from [this link](https://huggingface.co/TonyLee1256/texteller_det/resolve/main/rtdetr_r50vd_6x_coco.onnx?download=true) and place them in `src/models/det_model/model`.
|
||||
|
||||
> TexTeller's formula detection model was trained on a total of 11,867 images, consisting of 3,415 images from Chinese textbooks (over 130 layouts) and 8,272 images from the [IBEM dataset](https://zenodo.org/records/4757865).
|
||||
|
||||
### Formula Detection
|
||||
|
||||
Run the following command in the `TexTeller/src` directory:
|
||||
|
||||
```bash
|
||||
python infer_det.py
|
||||
```
|
||||
|
||||
Detects all formulas in the full image, and the results are saved in `TexTeller/src/subimages`.
|
||||
TexTeller’s formula detection model is trained on 3,415 images of Chinese educational materials (with over 130 layouts) and 8,272 images from the [IBEM dataset](https://zenodo.org/records/4757865), and it supports formula detection across entire images.
|
||||
|
||||
<div align="center">
|
||||
<img src="./assets/det_rec.png" width=400>
|
||||
<img src="./assets/det_rec.png" width=250>
|
||||
</div>
|
||||
|
||||
### Batch Formula Recognition
|
||||
1. Download the model weights and place them in `src/models/det_model/model/` [[link](https://huggingface.co/TonyLee1256/texteller_det/resolve/main/rtdetr_r50vd_6x_coco.onnx?download=true)].
|
||||
|
||||
After **formula detection**, run the following command in the `TexTeller/src` directory:
|
||||
2. Run the following command in the `src/` directory, and the results will be saved in `src/subimages/`
|
||||
|
||||
<details>
|
||||
<summary>Advanced: batch formula recognition</summary>
|
||||
|
||||
After **formula detection**, run the following command in the `src/` directory:
|
||||
|
||||
```shell
|
||||
python rec_infer_from_crop_imgs.py
|
||||
```
|
||||
|
||||
This will use the results of the previous formula detection to perform batch recognition on all cropped formulas, saving the recognition results as txt files in `TexTeller/src/results`.
|
||||
This will use the results of the previous formula detection to perform batch recognition on all cropped formulas, saving the recognition results as txt files in `src/results/`.
|
||||
|
||||
</details>
|
||||
|
||||
## 📡 API Usage
|
||||
|
||||
We use [ray serve](https://github.com/ray-project/ray) to provide an API interface for TexTeller, allowing you to integrate TexTeller into your own projects. To start the server, you first need to enter the `TexTeller/src` directory and then run the following command:
|
||||
We use [ray serve](https://github.com/ray-project/ray) to provide an API interface for TexTeller, allowing you to integrate TexTeller into your own projects. To start the server, you first need to enter the `src/` directory and then run the following command:
|
||||
|
||||
```bash
|
||||
python server.py
|
||||
@@ -128,13 +216,13 @@ python server.py
|
||||
| `--ngpu_per_replica` | The number of GPUs used per service replica,*default is 1*. You can set this value between 0 and 1 to run multiple service replicas on one GPU to share the GPU, thereby improving GPU utilization. (Note, if --num_replicas is 2, --ngpu_per_replica is 0.7, then 2 GPUs must be available) |
|
||||
|
||||
> [!NOTE]
|
||||
> A client demo can be found at `TexTeller/client/demo.py`, you can refer to `demo.py` to send requests to the server
|
||||
> A client demo can be found at `src/client/demo.py`, you can refer to `demo.py` to send requests to the server
|
||||
|
||||
## 🏋️♂️ Training
|
||||
|
||||
### Dataset
|
||||
|
||||
We provide an example dataset in the `TexTeller/src/models/ocr_model/train/dataset` directory, you can place your own images in the `images` directory and annotate each image with its corresponding formula in `formulas.jsonl`.
|
||||
We provide an example dataset in the `src/models/ocr_model/train/dataset/` directory, you can place your own images in the `images/` directory and annotate each image with its corresponding formula in `formulas.jsonl`.
|
||||
|
||||
After preparing your dataset, you need to **change the `DIR_URL` variable to your own dataset's path** in `**/train/dataset/loader.py`
|
||||
|
||||
@@ -142,11 +230,11 @@ After preparing your dataset, you need to **change the `DIR_URL` variable to you
|
||||
|
||||
If you are using a different dataset, you might need to retrain the tokenizer to obtain a different vocabulary. After configuring your dataset, you can train your own tokenizer with the following command:
|
||||
|
||||
1. In `TexTeller/src/models/tokenizer/train.py`, change `new_tokenizer.save_pretrained('./your_dir_name')` to your custom output directory
|
||||
1. In `src/models/tokenizer/train.py`, change `new_tokenizer.save_pretrained('./your_dir_name')` to your custom output directory
|
||||
|
||||
> If you want to use a different vocabulary size (default is 15k tokens), you need to change the `VOCAB_SIZE` variable in `TexTeller/src/models/globals.py`
|
||||
> If you want to use a different vocabulary size (default 15K), you need to change the `VOCAB_SIZE` variable in `src/models/globals.py`
|
||||
>
|
||||
2. **In the `TexTeller/src` directory**, run the following command:
|
||||
2. **In the `src/` directory**, run the following command:
|
||||
|
||||
```bash
|
||||
python -m models.tokenizer.train
|
||||
@@ -155,29 +243,25 @@ If you are using a different dataset, you might need to retrain the tokenizer to
|
||||
### Training the Model
|
||||
|
||||
1. Modify `num_processes` in `src/train_config.yaml` to match the number of GPUs available for training (default is 1).
|
||||
2. In the `TexTeller/src` directory, run the following command:
|
||||
2. In the `src/` directory, run the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch --config_file ./train_config.yaml -m models.ocr_model.train.train
|
||||
```
|
||||
|
||||
You can set your own tokenizer and checkpoint paths in `TexTeller/src/models/ocr_model/train/train.py` (refer to `train.py` for more information). If you are using the same architecture and vocabulary as TexTeller, you can also fine-tune TexTeller's default weights with your own dataset.
|
||||
You can set your own tokenizer and checkpoint paths in `src/models/ocr_model/train/train.py` (refer to `train.py` for more information). If you are using the same architecture and vocabulary as TexTeller, you can also fine-tune TexTeller's default weights with your own dataset.
|
||||
|
||||
In `TexTeller/src/globals.py` and `TexTeller/src/models/ocr_model/train/train_args.py`, you can change the model's architecture and training hyperparameters.
|
||||
In `src/globals.py` and `src/models/ocr_model/train/train_args.py`, you can change the model's architecture and training hyperparameters.
|
||||
|
||||
> [!NOTE]
|
||||
> Our training scripts use the [Hugging Face Transformers](https://github.com/huggingface/transformers) library, so you can refer to their [documentation](https://huggingface.co/docs/transformers/v4.32.1/main_classes/trainer#transformers.TrainingArguments) for more details and configurations on training parameters.
|
||||
|
||||
## 🚧 Limitations
|
||||
|
||||
* Does not support scanned images
|
||||
* Does not support handwritten formulas
|
||||
|
||||
## 📅 Plans
|
||||
|
||||
- [X] ~~Train the model with a larger dataset (7.5M samples, coming soon)~~
|
||||
- [ ] Recognition of scanned images
|
||||
- [ ] Support for English and Chinese scenarios
|
||||
- [X] ~~Train the model with a larger dataset~~
|
||||
- [X] ~~Recognition of scanned images~~
|
||||
- [X] ~~Support for English and Chinese scenarios~~
|
||||
- [X] ~~Handwritten formulas support~~
|
||||
- [ ] PDF document recognition
|
||||
- [ ] Inference acceleration
|
||||
- [ ] ...
|
||||
@@ -186,9 +270,6 @@ In `TexTeller/src/globals.py` and `TexTeller/src/models/ocr_model/train/train_ar
|
||||
|
||||
[](https://starchart.cc/OleehyO/TexTeller)
|
||||
|
||||
## 💖 Acknowledgments
|
||||
|
||||
Thanks to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) which has brought me a lot of inspiration, and [im2latex-100K](https://zenodo.org/records/56198#.V2px0jXT6eA) which enriches our dataset.
|
||||
|
||||
## 👥 Contributors
|
||||
|
||||
|
||||
@@ -4,31 +4,105 @@
|
||||
<h1>
|
||||
<img src="./fire.svg" width=30, height=30>
|
||||
𝚃𝚎𝚡𝚃𝚎𝚕𝚕𝚎𝚛
|
||||
<img src="./fire.svg" width=30, height=30>
|
||||
<img src="./fire.svg" width=30, height=30>
|
||||
</h1>
|
||||
<p align="center">
|
||||
🤗 <a href="https://huggingface.co/OleehyO/TexTeller">Hugging Face</a>
|
||||
🤗 <a href="https://huggingface.co/OleehyO/TexTeller"> Hugging Face </a>
|
||||
</p>
|
||||
<!-- <p align="center">
|
||||
<img src="./web_demo.gif" alt="TexTeller_demo" width=800>
|
||||
</p> -->
|
||||
|
||||
[](https://opensource.org/licenses/Apache-2.0)
|
||||
[](https://github.com/OleehyO/TexTeller/issues)
|
||||
[](https://huggingface.co/datasets/OleehyO/latex-formulas)
|
||||
[](https://huggingface.co/OleehyO/TexTeller)
|
||||
|
||||
</div>
|
||||
|
||||
https://github.com/OleehyO/TexTeller/assets/56267907/fb17af43-f2a5-47ce-ad1d-101db5fd7fbb
|
||||
<!-- <p align="center">
|
||||
|
||||
TexTeller是一个基于ViT的端到端公式识别模型,可以把图片转换为对应的latex公式
|
||||
<a href="https://opensource.org/licenses/Apache-2.0">
|
||||
<img src="https://img.shields.io/badge/License-Apache_2.0-blue.svg" alt="License">
|
||||
</a>
|
||||
<a href="https://github.com/OleehyO/TexTeller/issues">
|
||||
<img src="https://img.shields.io/badge/Maintained%3F-yes-green.svg" alt="Maintenance">
|
||||
</a>
|
||||
<a href="https://github.com/OleehyO/TexTeller/pulls">
|
||||
<img src="https://img.shields.io/badge/Contributions-welcome-brightgreen.svg?style=flat" alt="Contributions welcome">
|
||||
</a>
|
||||
<a href="https://huggingface.co/datasets/OleehyO/latex-formulas">
|
||||
<img src="https://img.shields.io/badge/Data-Texteller1.0-brightgreen.svg" alt="Data">
|
||||
</a>
|
||||
<a href="https://huggingface.co/OleehyO/TexTeller">
|
||||
<img src="https://img.shields.io/badge/Weights-Texteller3.0-yellow.svg" alt="Weights">
|
||||
</a>
|
||||
|
||||
TexTeller用了7.5M的图片-公式对进行训练(数据集可以在[这里](https://huggingface.co/datasets/OleehyO/latex-formulas)获取),相比于[LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)(使用了一个100K的数据集),TexTeller具有**更强的泛化能力**以及**更高的准确率**,可以覆盖大部分的使用场景(**扫描图片,手写公式除外**)。
|
||||
</p> -->
|
||||
|
||||
> 如果您觉得这个项目对您有帮助,请不要忘记点亮上方的Star⭐️
|
||||
https://github.com/OleehyO/TexTeller/assets/56267907/532d1471-a72e-4960-9677-ec6c19db289f
|
||||
|
||||
TexTeller是一个基于[TrOCR](https://arxiv.org/abs/2109.10282)的端到端公式识别模型,可以把图片转换为对应的latex公式
|
||||
|
||||
TexTeller用了**80M**个图片-公式对进行训练(过去的数据集可以在[这里](https://huggingface.co/datasets/OleehyO/latex-formulas)获取),相比于[LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)(使用了一个100K的数据集),TexTeller具有**更强的泛化能力**以及**更高的准确率**,可以覆盖大部分的使用场景。
|
||||
|
||||
> [!NOTE]
|
||||
> 如果您想为本项目提供一些反馈、建议等,欢迎在[Discussions版块](https://github.com/OleehyO/TexTeller/discussions)发起讨论。
|
||||
>
|
||||
> 另外,如果您觉得这个项目对您有帮助,请不要忘记点亮上方的Star⭐️🙏
|
||||
|
||||
---
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td>
|
||||
|
||||
## 🔖 目录
|
||||
|
||||
- [变更信息](#-变更信息)
|
||||
- [开搞](#-开搞)
|
||||
- [常见问题:无法连接到Hugging Face](#-常见问题无法连接到hugging-face)
|
||||
- [网页演示](#-网页演示)
|
||||
- [公式检测](#-公式检测)
|
||||
- [API调用](#-api调用)
|
||||
- [训练](#️️-训练)
|
||||
- [计划](#-计划)
|
||||
- [观星曲线](#️-观星曲线)
|
||||
- [贡献者](#-贡献者)
|
||||
|
||||
</td>
|
||||
<td>
|
||||
|
||||
<div align="center">
|
||||
<figure>
|
||||
<img src="cover.png" width="800">
|
||||
<figcaption>
|
||||
<p>可以被TexTeller识别出的图片</p>
|
||||
</figcaption>
|
||||
</figure>
|
||||
<div>
|
||||
<p>
|
||||
感谢
|
||||
<i>
|
||||
北京邮电大学超算平台
|
||||
</i>
|
||||
为本项工作提供支持😘
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
## 🔄 变更信息
|
||||
|
||||
* 📮[2024-05-02] 支持中英文-公式混合识别(Beta)。
|
||||
- 📮[2024-06-06] **TexTeller3.0**发布! 训练数据集增加到了**80M**(相较于TexTeller2.0增加了**10倍**,并且改善了数据的多样性)。新版的TexTeller具有以下新的特性:
|
||||
- 支持扫描图片、手写公式以及中英文混合的公式。
|
||||
- 在打印图片上具有通用的中英文识别能力。
|
||||
|
||||
* 📮[2024-04-12] 训练了**公式检测模型**,从而增加了对整个文档进行公式检测+公式识别(整图推理)的功能!
|
||||
- 📮[2024-05-02] 支持**段落识别**。
|
||||
|
||||
* 📮[2024-03-25] TexTeller2.0发布!TexTeller2.0的训练数据增大到了7.5M(相较于TexTeller1.0**增加了~15倍**并且数据质量也有所改善)。训练后的TexTeller2.0在测试集中展现出了**更加优越的性能**,尤其在生僻符号、复杂多行、矩阵的识别场景中。
|
||||
- 📮[2024-04-12] **公式检测模型**发布!
|
||||
|
||||
- 📮[2024-03-25] TexTeller2.0发布!TexTeller2.0的训练数据增大到了7.5M(相较于TexTeller1.0增加了~15倍并且数据质量也有所改善)。训练后的TexTeller2.0在测试集中展现出了更加优越的性能,尤其在生僻符号、复杂多行、矩阵的识别场景中。
|
||||
|
||||
> 在[这里](./test.pdf)有更多的测试图片以及各家识别模型的横向对比。
|
||||
|
||||
@@ -46,20 +120,42 @@ TexTeller用了7.5M的图片-公式对进行训练(数据集可以在[这里](ht
|
||||
pip install texteller
|
||||
```
|
||||
|
||||
3. 进入 `TexTeller/src`目录,在终端运行以下命令进行推理:
|
||||
3. 进入`src/`目录,在终端运行以下命令进行推理:
|
||||
|
||||
```bash
|
||||
python inference.py -img "/path/to/image.{jpg,png}"
|
||||
# use --inference-mode option to enable GPU(cuda or mps) inference
|
||||
#+e.g. python inference.py -img "img.jpg" --inference-mode cuda
|
||||
# use -mix option to enable mixed text and formula recognition
|
||||
#+e.g. python inference.py -img "img.jpg" -mix
|
||||
```
|
||||
|
||||
> 第一次运行时会在Hugging Face上下载所需要的权重
|
||||
|
||||
> [!IMPORTANT]
|
||||
> 如果使用文字-公式混合识别,需要[下载公式检测模型的权重](https://github.com/OleehyO/TexTeller/blob/main/assets/README_zh.md#%E4%B8%8B%E8%BD%BD%E6%9D%83%E9%87%8D)
|
||||
### 段落识别
|
||||
|
||||
如演示视频所示,TexTeller还可以识别整个文本段落。尽管TexTeller具备通用的文本OCR能力,但我们仍然建议使用段落识别来获得更好的效果:
|
||||
|
||||
1. 下载公式检测模型的权重到`src/models/det_model/model/`目录 [[链接](https://huggingface.co/TonyLee1256/texteller_det/resolve/main/rtdetr_r50vd_6x_coco.onnx?download=true)]
|
||||
|
||||
2. `src/`目录下运行`inference.py`并添加`-mix`选项,结果会以markdown的格式进行输出。
|
||||
|
||||
```bash
|
||||
python inference.py -img "/path/to/image.{jpg,png}" -mix
|
||||
```
|
||||
|
||||
TexTeller默认使用轻量的[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)模型来识别中英文,可以尝试使用更大的模型来获取更好的中英文识别效果:
|
||||
|
||||
| 权重 | 描述 | 尺寸 |
|
||||
|-------------|-------------------| ---- |
|
||||
| [ch_PP-OCRv4_det.onnx](https://huggingface.co/OleehyO/paddleocrv4.onnx/resolve/main/ch_PP-OCRv4_det.onnx?download=true) | **默认的检测模型**,支持中英文检测 | 4.70M |
|
||||
| [ch_PP-OCRv4_server_det.onnx](https://huggingface.co/OleehyO/paddleocrv4.onnx/resolve/main/ch_PP-OCRv4_server_det.onnx?download=true) | 高精度模型,支持中英文检测 | 115M |
|
||||
| [ch_PP-OCRv4_rec.onnx](https://huggingface.co/OleehyO/paddleocrv4.onnx/resolve/main/ch_PP-OCRv4_rec.onnx?download=true) | **默认的识别模型**,支持中英文识别 | 10.80M |
|
||||
| [ch_PP-OCRv4_server_rec.onnx](https://huggingface.co/OleehyO/paddleocrv4.onnx/resolve/main/ch_PP-OCRv4_server_rec.onnx?download=true) | 高精度模型,支持中英文识别 | 90.60M |
|
||||
|
||||
把识别/检测模型的权重放在`src/models/third_party/paddleocr/checkpoints/`
|
||||
下的`det/`或`rec/`目录中,然后重命名为`default_model.onnx`。
|
||||
|
||||
> [!NOTE]
|
||||
> 段落识别只能识别文档内容,无法还原文档的结构。
|
||||
|
||||
## ❓ 常见问题:无法连接到Hugging Face
|
||||
|
||||
@@ -81,7 +177,7 @@ TexTeller用了7.5M的图片-公式对进行训练(数据集可以在[这里](ht
|
||||
--local-dir-use-symlinks False
|
||||
```
|
||||
|
||||
3. 把包含权重的目录上传远端服务器,然后把 `TexTeller/src/models/ocr_model/model/TexTeller.py`中的 `REPO_NAME = 'OleehyO/TexTeller'`修改为 `REPO_NAME = 'your/dir/path'`
|
||||
3. 把包含权重的目录上传远端服务器,然后把 `src/models/ocr_model/model/TexTeller.py`中的 `REPO_NAME = 'OleehyO/TexTeller'`修改为 `REPO_NAME = 'your/dir/path'`
|
||||
|
||||
<!-- 如果你还想在训练模型时开启evaluate,你需要提前下载metric脚本并上传远端服务器:
|
||||
|
||||
@@ -99,7 +195,7 @@ TexTeller用了7.5M的图片-公式对进行训练(数据集可以在[这里](ht
|
||||
|
||||
## 🌐 网页演示
|
||||
|
||||
进入 `TexTeller/src` 目录,运行以下命令
|
||||
进入 `src/` 目录,运行以下命令
|
||||
|
||||
```bash
|
||||
./start_web.sh
|
||||
@@ -108,45 +204,39 @@ TexTeller用了7.5M的图片-公式对进行训练(数据集可以在[这里](ht
|
||||
在浏览器里输入 `http://localhost:8501`就可以看到web demo
|
||||
|
||||
> [!NOTE]
|
||||
> 对于Windows用户, 请运行 `start_web.bat`文件.
|
||||
> 对于Windows用户, 请运行 `start_web.bat`文件。
|
||||
|
||||
## 🧠 整图推理
|
||||
## 🔍 公式检测
|
||||
|
||||
TexTeller还支持对整张图片进行**公式检测+公式识别**,从而对整图公式进行检测,然后进行批公式识别。
|
||||
|
||||
### 下载权重
|
||||
|
||||
根据[这里的链接](https://huggingface.co/TonyLee1256/texteller_det/resolve/main/rtdetr_r50vd_6x_coco.onnx?download=true)把模型权重下载到`src/models/det_model/model`
|
||||
|
||||
> TexTeller的公式检测模型在3415张中文教材数据(130+版式)和8272张[IBEM数据集](https://zenodo.org/records/4757865)上,共11867张图片上训练得到.
|
||||
|
||||
### 公式检测
|
||||
|
||||
`TexTeller/src`目录下运行以下命令
|
||||
|
||||
```bash
|
||||
python infer_det.py
|
||||
```
|
||||
|
||||
对整张图中的所有公式进行检测,结果保存在 `TexTeller/src/subimages`
|
||||
TexTeller的公式检测模型在3415张中文教材数据(130+版式)和8272张[IBEM数据集](https://zenodo.org/records/4757865)上训练得到,支持对整张图片进行**公式检测**。
|
||||
|
||||
<div align="center">
|
||||
<img src="det_rec.png" width=400>
|
||||
<img src="det_rec.png" width=250>
|
||||
</div>
|
||||
|
||||
### 公式批识别
|
||||
1. 下载公式检测模型的权重到`src/models/det_model/model/`目录 [[链接](https://huggingface.co/TonyLee1256/texteller_det/resolve/main/rtdetr_r50vd_6x_coco.onnx?download=true)]
|
||||
|
||||
在进行**公式检测后**, `TexTeller/src`目录下运行以下命令
|
||||
2. `src/`目录下运行以下命令,结果保存在`src/subimages/`
|
||||
|
||||
```bash
|
||||
python infer_det.py
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary>更进一步:公式批识别</summary>
|
||||
|
||||
在进行**公式检测后**,`src/`目录下运行以下命令
|
||||
|
||||
```shell
|
||||
python rec_infer_from_crop_imgs.py
|
||||
```
|
||||
|
||||
会基于上一步公式检测的结果,对裁剪出的所有公式进行批量识别,将识别结果在 `TexTeller/src/results`中保存为txt文件。
|
||||
会基于上一步公式检测的结果,对裁剪出的所有公式进行批量识别,将识别结果在 `src/results/`中保存为txt文件。
|
||||
</details>
|
||||
|
||||
## 📡 API调用
|
||||
|
||||
我们使用[ray serve](https://github.com/ray-project/ray)来对外提供一个TexTeller的API接口,通过使用这个接口,你可以把TexTeller整合到自己的项目里。要想启动server,你需要先进入 `TexTeller/src`目录然后运行以下命令:
|
||||
我们使用[ray serve](https://github.com/ray-project/ray)来对外提供一个TexTeller的API接口,通过使用这个接口,你可以把TexTeller整合到自己的项目里。要想启动server,你需要先进入 `src/`目录然后运行以下命令:
|
||||
|
||||
```bash
|
||||
python server.py
|
||||
@@ -170,7 +260,7 @@ python server.py
|
||||
|
||||
### 数据集
|
||||
|
||||
我们在 `TexTeller/src/models/ocr_model/train/dataset`目录中提供了一个数据集的例子,你可以把自己的图片放在 `images`目录然后在 `formulas.jsonl`中为每张图片标注对应的公式。
|
||||
我们在 `src/models/ocr_model/train/dataset/`目录中提供了一个数据集的例子,你可以把自己的图片放在 `images`目录然后在 `formulas.jsonl`中为每张图片标注对应的公式。
|
||||
|
||||
准备好数据集后,你需要在 `**/train/dataset/loader.py`中把 **`DIR_URL`变量改成你自己数据集的路径**
|
||||
|
||||
@@ -178,11 +268,11 @@ python server.py
|
||||
|
||||
如果你使用了不一样的数据集,你可能需要重新训练tokenizer来得到一个不一样的词典。配置好数据集后,可以通过以下命令来训练自己的tokenizer:
|
||||
|
||||
1. 在 `TexTeller/src/models/tokenizer/train.py`中,修改 `new_tokenizer.save_pretrained('./your_dir_name')`为你自定义的输出目录
|
||||
1. 在`src/models/tokenizer/train.py`中,修改`new_tokenizer.save_pretrained('./your_dir_name')`为你自定义的输出目录
|
||||
|
||||
> 注意:如果要用一个不一样大小的词典(默认1.5W个token),你需要在 `TexTeller/src/models/globals.py`中修改 `VOCAB_SIZE`变量
|
||||
> 注意:如果要用一个不一样大小的词典(默认1.5W个token),你需要在`src/models/globals.py`中修改`VOCAB_SIZE`变量
|
||||
|
||||
2. **在 `TexTeller/src` 目录下**运行以下命令:
|
||||
2. **在`src/`目录下**运行以下命令:
|
||||
|
||||
```bash
|
||||
python -m models.tokenizer.train
|
||||
@@ -192,30 +282,23 @@ python server.py
|
||||
|
||||
1. 修改`src/train_config.yaml`中的`num_processes`为训练用的显卡数(默认为1)
|
||||
|
||||
2. 在`TexTeller/src`目录下运行以下命令:
|
||||
2. 在`src/`目录下运行以下命令:
|
||||
|
||||
```bash
|
||||
accelerate launch --config_file ./train_config.yaml -m models.ocr_model.train.train
|
||||
```
|
||||
|
||||
你可以在 `TexTeller/src/models/ocr_model/train/train.py`中设置自己的tokenizer和checkpoint路径(请参考 `train.py`)。如果你使用了与TexTeller一样的架构和相同的词典,你还可以用自己的数据集来微调TexTeller的默认权重。
|
||||
|
||||
在 `TexTeller/src/globals.py`和 `TexTeller/src/models/ocr_model/train/train_args.py`中,你可以改变模型的架构以及训练的超参数。
|
||||
你可以在`src/models/ocr_model/train/train.py`中设置自己的tokenizer和checkpoint路径(请参考`train.py`)。如果你使用了与TexTeller一样的架构和相同的词典,你还可以用自己的数据集来微调TexTeller的默认权重。
|
||||
|
||||
> [!NOTE]
|
||||
> 我们的训练脚本使用了[Hugging Face Transformers](https://github.com/huggingface/transformers)库, 所以你可以参考他们提供的[文档](https://huggingface.co/docs/transformers/v4.32.1/main_classes/trainer#transformers.TrainingArguments)来获取更多训练参数的细节以及配置。
|
||||
|
||||
## 🚧 不足
|
||||
|
||||
* 不支持扫描图片
|
||||
* 不支持手写体公式
|
||||
* 不支持PDF文档识别
|
||||
|
||||
## 📅 计划
|
||||
|
||||
- [X] ~~使用更大的数据集来训练模型~~
|
||||
- [ ] 扫描图片识别
|
||||
- [ ] 中英文场景支持
|
||||
- [X] ~~扫描图片识别~~
|
||||
- [X] ~~中英文场景支持~~
|
||||
- [X] ~~手写公式识别~~
|
||||
- [ ] PDF文档识别
|
||||
- [ ] 推理加速
|
||||
|
||||
@@ -223,10 +306,6 @@ python server.py
|
||||
|
||||
[](https://starchart.cc/OleehyO/TexTeller)
|
||||
|
||||
## 💖 感谢
|
||||
|
||||
Thanks to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) which has brought me a lot of inspiration, and [im2latex-100K](https://zenodo.org/records/56198#.V2px0jXT6eA) which enriches our dataset.
|
||||
|
||||
## 👥 贡献者
|
||||
|
||||
<a href="https://github.com/OleehyO/TexTeller/graphs/contributors">
|
||||
|
||||
BIN
assets/cover.png
BIN
assets/cover.png
Binary file not shown.
|
Before Width: | Height: | Size: 3.4 MiB After Width: | Height: | Size: 3.4 MiB |
BIN
assets/scss.png
Normal file
BIN
assets/scss.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 137 KiB |
Reference in New Issue
Block a user