Files
doc_processer/app/api/v1/endpoints/image.py
2025-12-31 17:38:32 +08:00

49 lines
1.7 KiB
Python

"""Image OCR endpoint."""
from fastapi import APIRouter, Depends, HTTPException
from app.core.dependencies import get_image_processor, get_layout_detector, get_ocr_service
from app.schemas.image import ImageOCRRequest, ImageOCRResponse
from app.services.image_processor import ImageProcessor
from app.services.layout_detector import LayoutDetector
from app.services.ocr_service import OCRService
router = APIRouter()
@router.post("/ocr", response_model=ImageOCRResponse)
async def process_image_ocr(
request: ImageOCRRequest,
image_processor: ImageProcessor = Depends(get_image_processor),
layout_detector: LayoutDetector = Depends(get_layout_detector),
ocr_service: OCRService = Depends(get_ocr_service),
) -> ImageOCRResponse:
"""Process an image and extract content as LaTeX, Markdown, and MathML.
The processing pipeline:
1. Load and preprocess image (add 30% whitespace padding)
2. Detect layout using DocLayout-YOLO
3. Based on layout:
- If plain text exists: use PP-DocLayoutV2 for mixed recognition
- Otherwise: use PaddleOCR-VL with formula prompt
4. Convert output to LaTeX, Markdown, and MathML formats
"""
image = image_processor.preprocess(
image_url=request.image_url,
image_base64=request.image_base64,
)
try:
# 3. Perform OCR based on layout
ocr_result = ocr_service.recognize(image)
except RuntimeError as e:
raise HTTPException(status_code=503, detail=str(e))
# 4. Return response
return ImageOCRResponse(
latex=ocr_result.get("latex", ""),
markdown=ocr_result.get("markdown", ""),
mathml=ocr_result.get("mathml", ""),
)